Designated Emphasis in Energy Science and Technology - DEEST

Executive Committee & Graduate Group Admissions Committee

Van Carey, ME (Chair)
Lutgard De Jonghe, MSE

Kristin Persson, MSE
Jeffrey Long, Chem

John Newman, ChemE
Seth Sanders, EECS

Daniel Kammen, ERG


Submit applications to the Chair of the Executive Committee:

Professor Van Carey
6123 Etcheverry Hall
U.C. Berkeley, Mail Code 1740

Forms: DEEST Petition & Change of Degree Form through CalCentral (Acad eForm)


Designated Emphasis

Reliable and economical energy is essential for society to endure. Reliance on fossil sources has now created a dependence that through progressive depletion in the not too distant future, may threaten the stability of economic systems and lead   to serious, if not irreparable, environmental damage. To avoid future catastrophic global conflicts and damaging climatic changes, present energy technologies are required to operate at their highest possible efficiencies with the lowest possible environmental impact, and new technologies need to be devised and deployed that are economic, renewable, and of low or zero climate impact.  This compelling scenario is propelling the development of a distinct area of science and technology that is focused on supporting the needs of the global energy market place. 


The development of future, and even present-day energy sectors holds special challenges:  many supply and demand technologies have multi-decadal lifetimes, appropriate forms of governmental oversight are not widely agreed upon, and the market entry of new technologies is often effectively impeded and increasingly encumbered by national security concerns. The looming energy and climatic problems are truly global issues that complicate and accelerate other problems: many energy markets are international in nature, and over the next two decades, commercial energy use in developing nations will soon surpass that in the industrialized nations.


A deepening of the understanding of factors that affect efficiencies, more accurate modeling of systems and processes, study and discovery of new materials that enable innovative energy technologies, and effective management and policies are at the basis of continued dramatic change in a wide range of technologies.  This may stimulate a revolution in energy technology systems and their management that will hopefully alleviate the pressing energy needs of our present-day society and of generations to come. 


The dominant energy sectors at present either rely on electricity generation from fossil sources, or on liquid fossil fuels for transportation.  The potential exists, for example, to change today’s electricity systems to encourage and incorporate new supply and demand-side innovations as well as innovative management policies. This would transform an enormous and vital component of U. S. infrastructure into one that provides greatly improved energy services, ensures energy diversity, is highly secure against market manipulation and terrorist attacks, and permits the provision of energy with greatly reduced regional and global environmental impacts. High efficiency combustion systems can be devised that strongly increase the conversion from hydrocarbon fuel to energy.  Based on new materials physics and materials chemistry, scientific advances and inventions in nanotechnology have opened the door to potentially affordable and efficient solar and thermoelectric power generation.  Novel nuclear reactors using designer fuel with minimal waste generation can now be conceptualized, significantly reducing fossil fuel consumption and nuclear waste, that in the coming decade will generate power without the inherent global warming from CO2 emissions. Advances in the understanding of biochemistry open the door to carbon-neutral technologies from biomass.  Similarly, dramatic transformations can be expected in transportation systems, where new fuels, such as hydrogen or alcohols, could be produced in mass by solar, biomass, or nuclear technologies, and be consumed in highly efficient fuel cell or battery-powered vehicles. All this is possible, but will require an unprecedented level of dedication to education and interdisciplinary energy study and research.


The Designated Emphasis in Energy Science and Technology (DEEST) advances these ongoing efforts at the University of California at Berkeley, and educates a new group of leaders for the global enterprise of creating future energy systems. 


Designated Emphasis in Energy Science and Technology (DEEST) 

The  Graduate Group in the in Energy Science and Technology has to date  eleven affiliated Ph.D. programs: Chemical Engineering, Chemistry, Nuclear Engineering, the Energy Resources Group, Materials Science and Engineering, Physics, Plant and Microbial Biology, Mechanical Engineering, EECS, the ME- Fluid Mechanics and Ocean Engineering Group, and Applied Science and Technology.  

The main goal of the DEEST is to enrich student's technical education in an important field and to enhance and facilitate interactions between faculty and students in different programs by creating a flexible and integrated interdisciplinary research and teaching environment.  


Academic Nature of the Designated Emphasis

Students are required to complete academic work in the DEEST in addition to or as part of the full requirements of the affiliated programs. Where appropriate, affiliated PhD programs may choose to recognize the DEEST as fulfilling the requirements of an outside field in their program. The Minimum Requirements are two technical courses and one additional course on Energy Management and Policy (see Section 2.4 Curricula). In addition, it is required   that the student  participate in seminars relevant to the DEEST when such are offered.


Requirements for Admission to the Designated Emphasisin Energy Science and Technology

The Admissions Committee of the Graduate Group for the DEEST decides on  admission to the DEEST. To be admitted to the DE in Energy Science and Technology, an applicant must already be accepted into one of the affiliated PhD programs. Candidates must then submit a petition for admission to the DEEST Graduate Group Admissions Committee prior to taking the PhD Qualifying Examination in the affiliated program. A sponsoring faculty member in the student's affiliated program who is member of the DEEST Graduate Group must endorse the petition. As different affiliated programs have different examination requirements, the timeline for the application may vary.  


In the early stages of the DE, admission after the Qualifying Examination might be considered by the DE Admission Committee in exceptional cases, where it can be certified that a member of the DEEST Graduate Group was on the student’s Qualifying Exam Committee, and that at least one of the student’s qualifying topics had sufficient content in the field of energy science or energy technology and engineering to meet the requirements of the DE.  Such an exception must be recommended to the Graduate Division for its approval.


Normative Time Impact on Affiliated PhD programs 

For students who can enroll in the DE curriculum to satisfy an outside field requirement in their PhD program of study the DE should have little impact on normative time, as it might require only one additional class, plus one seminar per semester. Only for students who decide to join the DEEST after finishing their regular PhD coursework this might require   additional time, but this problem should diminish in the future, and then be of relevance only for a small number of students.


Appointment of Faculty to the Qualifying Examination and Dissertation Committees

Before taking the Qualifying Examination, the student will be advised by the Head Graduate Advisor in the student's major and by the member of the DEEST Advising Committee assigned to the student by the DEEST Graduate Group’s Executive Committee. After consultation between the student and his or her advisers, the representative of the DE to serve on the PhD Qualifying Examination and Dissertation Committees will be nominated to the Graduate Division. The Dean of the Graduate Division, acting on behalf of the Graduate Council, appoints the Committee members.  Representatives of the DEEST to the Ph.D. Qualifying exam must be chosen from a list of DEEST faculty members, maintained by the Executive Committee.  (See  section 2.5)

If the student’s dissertation Chair is not part of the DEEST Graduate Group, the student, the DEEST Graduate Advising Committee and the Head Graduate Advisor will nominate someone from the DEEST faculty to serve as an additional inside member on the student’s dissertation committee.  It is permissible that the student’s outside member also represent the designated emphasis on the Qualifying Examination committee.


Required and Elective Courses

The curriculum of the DE will consist of graded upper division and graduate courses with the following distribution:  one course required in Group A: Energy Policy and Management, and two required technical courses selected from two course groups, Group B: Energy Sciences, and Group C: Energy Technology.  The selection of courses will be maintained and regularly updated by the DE Graduate Group’s Curriculum Committee to follow developments in the field, and the offering of new relevant courses.   An initial list is given below.  In addition, students are required to attend a   seminar series and discussion forum, as arranged by the Curriculum Committee, which is to serve as a focal point for communication and interaction between the participants. It is expected that students who elect the DEEST will do so in fields that broaden their subjects of study beyond that of their major. It is also expected that the major programs contain sufficient background to support the choice of courses for the DEEST. While the course selections do not have to focus on one technology or one science aspect, the choices in Groups B and C have been presented so as to allow a selection of coherent sets.  Variations and exemptions may be allowed upon petition to the DEEST Graduate Group’s Advising Committee 


Group A: Energy Management and Policy
ER100(200).  Energy and Society
ER151.  Politics of Energy and Environmental Policy
ER280.  Energy Economics
CE107.  Climate Change Mitigation
BA212: Energy market strategies and policies.


Group B:  Energy Sciences
Chemistry: graduate course sequence of three 1 unit course modules may serve as satisfying one 3 unit course in Group B.
PHYS 250: Physics of Nanostructured Materials (Phys 250 this course may have different topics. Not all of these can be considered for the DEEST) 
Chemistry 143.  Nuclear Chemistry.
ChemE176.  Principles of Electrochemical Processes
ME259.  Microscale Thermophysics and Heat Transfer.
ER220.  Modeling Energy, Environmental, and Resource Systems
ME253.  Thermal Radiation.
NE180. Introduction to Controlled Fusion
NE280. Fusion Reactor Engineering
NE281. Fully Ionized Plasmas
ChE 244. Kinetics and Reaction Engineering.  
ChE 245. Catalysis.  


Group C: Energy Technology
Electrical power Systems
ER254.  Electric Power Systems

Nuclear Power Systems
NE225.  The Nuclear Fuel Cycle
NE161.  Nuclear Power Engineering
NE167/NE267. Nuclear Reactor Safety
NE265.   Design Analysis of Nuclear Reactors
NE124. Radioactive Waste Management
NE224. Safety Assessment for Geological Disposal of Radioactive Wastes
NE225. The Nuclear Fuel Cycle 

Renewable resources
ER120.     Renewable Resources for Electric Generation
CEE216.  Hazardous and Industrial Waste Treatment.
ME 241B. Ocean-wave energy

C226.  Photovoltaic Materials; Modern Technologies in the Context of a Renewable Energy Market

Materials Engineering
MSE221.  Fuel Cells, Batteries, and Chemical Sensors: Principles, Processes, Materials, and Technology
MSE 213.  Environmental Effects on Materials Properties and Behavior. 
EE290Y.  Organic Materials in Electronics
NE120. Nuclear Materials
NE220. Irradiation Effects in Nuclear Materials
NE221. Corrosion in Nuclear Power Systems

Thermal Engineering
ME142. Thermal Environmental Control
ME145. Computer-Aided Thermal Design
ME140. Combustion
ME 252. Heat Convection
ME 253. Thermal Radiation
ME 254. Thermodynamics I
ME 255. Energy Transfer in Gaseous and Condensed Phases
ME 256. Combustion
ME 257. Advanced Combustion
ME 258. Heat Transfer with Phase Change


Seminars: Energy Science and Technology Seminars -- [1 unit  S/U] see announcements. The student must maintain a list of DEEST seminars attended, and present a list of at least 10 seminars to the Qualifying exam committee. Questions on these siminars may be part of the Ph.D. Qualifying exam. 


Examination Requirements

The Qualifying Examination shall include examination of knowledge within the DEEST. The Qualifying Examination Committee shall include at least one member of the DEEST Graduate Group.  If a faculty member of the student’s major, the DE representative can serve either as the  chair or as an inside member of the committee.  If the DEEST representative is from an affiliated program, it is permissible for him or her to serve as either an additional inside or outside member.  Satisfactory performance on the qualifying examination for the PhD will be judged according to the established standards in the student’s major program.


Dissertation Requirements

The dissertation topic shall incorporate study within the DEEST. The Dissertation Committee shall include at least one faculty member of the DE to ensure that the dissertation contributes in significant manner to the interdisciplinary field of Energy Science and Technology.


Degree Conferral Process

Upon successful completion of the dissertation, the student’s transcript and diploma will record the designation: “PhD in Affiliated Program Name with a Designated Emphasis in Energy Science and Technology.”  This designation certifies that the student has participated in and successfully completed the DE in addition to the affiliated program’s requirements for the PhD.