
to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

Finding Feasible Mold Parting Directions Using Graphics Hardware

Rahul Khardekar Greg Burton Sara McMains

Mechanical Engineering Department
University of California, Berkeley ∗

We present new programmable graphics hardware accelerated algo-
rithms to test the castability of geometric parts and assist with part
redesign. These algorithms efficiently identify and graphically dis-
play undercuts and minimum and insufficient draft angles. Their
running times grow only linearly with respect to the number of
facets in the solid model, making them efficient subroutines for our
algorithms that test whether a tessellated CAD model can be man-
ufactured in a two-part mold. We have developed and implemented
two such algorithms to choose candidate directions to test for casta-
bility using accessibility analysis and Gauss maps. The efficiency
of these algorithms lies in that they identify groups of candidate di-
rections such that if any one direction in the group is not castable,
none are, or if any one is castable, all are. We examine trade-offs
between the algorithms’ speed, accuracy, and whether they guaran-
tee that a castable direction will be found for a part if one exists.

1 Introduction

In molding and casting manufacturing processes, molten raw ma-
terial is shaped in molds from which the resulting part must be re-
moved after solidification. Typical rigid, reusable molds consist of
two main halves, which are separated in opposite directions (the
positive and negative “casting direction”) to remove the part. To
be castable in a given direction, it must be free from undercut fea-
tures which would make it impossible to define mold halves that
could be separated from the part when translated along the casting
directions without colliding with the part (see Figure 1). For small
scale, manual production, one could imagine a worker simultane-
ously translating and rotating the mold halves along arbitrary paths
during removal, but for automated mass production, mold halves
are translated only, always in opposite directions.

We call an object “castable” in a potential mold removal direction if
it has no undercuts relative to that direction; the direction is called
a castable direction for that object. Formally, an object is castable
in a direction ~d if the complement of the object can be split in two
parts such that one part can be translated to infinity in the direction
~d and the other in the direction −~d without colliding with the object
[Ahn et al. 2002]. Note that if the object is castable in a direction
~d, then it is also castable in −~d. For a convex part all directions
are castable directions. For other part geometries, there may be no
castable direction corresponding to a two-part mold with opposite
removal directions; more expensive multi-piece molds with cores
and inserts (possibly including threaded inserts) would be required

∗{rahul | mcmains}@me.berkeley.edu, greg.burton@gmail.com

Figure 1: Parts which are not castable in the vertical direction be-
cause of undercut features (a) Cube with an undercut (b) Plastic
casing with undercuts on lower cylindrical bosses

for such parts. In this paper, we present algorithms that address the
needs of a CAD user aiming for a part design that can be produced
the most economically, in a two-part mold; we leave multi-piece
molds to future work.

In the design process, the casting direction should be determined
before detail design features like the bosses and ribs in Figure 1-b
are added. There are numerous occasions when a part needs to be
modified after the casting direction is chosen. Thus, there is a need
for a tool which will warn the designer as soon as a change is made
which makes the part non-castable in the chosen direction. Earlier
in the design process, during the conceptual design phase, feedback
about whether any castable directions exist for the proposed geom-
etry is helpful. During this stage, identifying all possible castable
directions is useful because a designer can then choose the best
possible direction in terms of manufacturing cost. In this paper,
we describe efficient graphics-hardware accelerated algorithms to
solve the above problems for tessellated input geometry.

1

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

2 Background and related work

Recently, commodity graphics hardware has seen enormous im-
provements in terms of programmability and computational speed.
Due to these improvements, Graphics Processing Units (GPUs)
have become a viable alternative to CPUs for general purpose com-
puting. Furthermore, “Moore’s law” seems to apply to GPUs but
with an even faster improvement rate than for CPUs over the past
decade and half: a speedup of roughly 2.4 times a year for GPUs,
compared to a 1.7 times speedup per year for CPUs over the same
period [Lin and Manocha 2003]. If these sustained trends continue,
the performance advantage for algorithms that take advantage of
graphics hardware will continue to grow. Previous applications of
graphics hardware to manufacturing and inspection problems used
only the hidden surface removal capabilities of the graphics hard-
ware [Saito and Takahashi 1991; Konig and Groller 1998; Bala-
subramaniam et al. 2000; Spitz et al. 1999; Inui and Kakio 2000;
Inui 2003], but today’s programmable hardware can speed up more
complex calculations [Fernando 2004]. The preliminary results we
described in [Khardekar and McMains 2004] were the first appli-
cation of the programmable capabilities of GPUs to castability that
we are aware of.

A programmable graphics card allows general purpose computing
in two stages of the graphics rendering pipeline. A vertex shader
stage executes a user defined vertex program in parallel on every
vertex passed to the rendering pipeline. A vertex program can
change the position, normal, color, and texture coordinates of each
vertex. The results of these calculations are passed on to the ras-
terization stage, where normals, colors, and texture coordinates are
interpolated inside the triangles the vertices define. Then a pixel
shader executes a user defined fragment program at every pixel,
taking the interpolated vertex and texture data as input and setting
the color and the depth value of that pixel as output.

There is a large body of literature on checking castability and find-
ing castable directions. Many researchers who have looked at the
problem of finding a casting direction for a two-part mold for a
given geometry only look at a limited number of potential direc-
tions. [Wong et al. 1998] and [Ravi and Srinivasan 1990] only con-
sider parting directions along the three principle axes. [Chen 1997]
looks only at the axes of a minimum bounding box. [Hui and Tan
1992] use a heuristic search approach which, even though not ex-
haustive, shows significant performance hits on more complex parts
with curved surfaces.

[Dhaliwal et al. 2001] consider all access directions in their al-
gorithm for the automated design of multi-piece sacrificial molds.
However, this class of molds is more appropriate for prototyping
than for mass production since the molds are destroyed for every
part. For their application the problem becomes one of decompos-
ing the mold into machinable pieces rather than de-molding the
part. Other researchers have explored automating the design of
multi-piece molds and rapid tooling using layered manufacturing
[Chen 2001; Chen and Rosen 2003] and shape deposition modeling
for sacrificial molds [Stampfl et al. 2002].

Chen et al. introduce the term visibility map to the demoldabil-
ity literature in a paper that shows how to minimize the number
of cores in parts that can’t necessarily be made in a two-part mold
[Chen et al. 1993]. They find potential undercuts by performing a
regularized Boolean subtraction [Requicha 1980] of the part from
its convex hull. Woo’s more general paper presents the concept of
using convex visibility maps that partition the Gaussian sphere, de-
scribing their application to different classes of visibility problems
in manufacturing [Woo 1994]. He relates the degrees of freedom
of the surface to be manufactured to the number of manufacturing

setups, and shows how clustering of overlapping visibility maps for
different surfaces can be used to reduce the total number of setups
required for machining. In a subsequent paper Chen and Chou use
Augmented Visibility Maps to represent visibility for geometry that
doesn’t admit a two-part mold and describe how potential undercuts
that can’t be handled by a single core can be subdivided to show a
designer what would need to be changed to make a design moldable
[Chen and Chou 1995].

A number of papers look to graph-based feature recognition meth-
ods to find potential undercuts [Ganter and Skoglund 1991; Fu et al.
1999a; Fu et al. 1999b; Yin et al. 2001]. Unfortunately graph-based
methods break down for interacting features, a shortcoming that
[Ye et al. 2001] address by using a hybrid approach that doesn’t
rely exclusively on graph matching. [Wuerger and Gadh 1997a]
present an incomplete algorithm based on convex hull differences,
similar to the [Chen et al. 1993] approach, to find a parting direction
for a two-part mold. Their more significant contribution is in their
companion paper [Wuerger and Gadh 1997b], the first we are aware
of to describe the implementation of a discretized representation of
a Gauss map. This data structure gives them much better running
times than their contemporaries report.

Provably correct algorithms for castability can be found in the com-
putational geometry literature. [Rappaport and Rosenbloom 1994]
present an O(n logn) time algorithm (unimplemented) for the 2D
case of finding if a polygon is 2-castable. Ahn et al. combines
strong theory with a partial implementation [Ahn et al. 2002]. They
show that a definitive answer to whether a polyhedron is castable
in any direction can be obtained via building an arrangement on a
sphere as a function of facet normals and orientations where facets
may start to obscure each other. Their implementation, however,
only tests a heuristically chosen set of directions because of the
complexity of implementation and long running time of the com-
plete algorithm. These algorithms all work with tessellated ge-
ometry; for curves, [McMains and Chen 2004] analyze 2D curved
spline input, and for 3D [Elber et al. 2004] describe an impressive
new algorithm combining strong theory and an implementation, but
it is limited to C3 continuous NURBS surfaces only.

3 Checking a direction for castability

This section describes our graphics-hardware accelerated algo-
rithms for checking a part when the casting direction is given.
These algorithms efficiently identify and graphically display under-
cuts and minimum and insufficient draft angles.

3.1 Castability checking

For simplicity, we first describe the castability checking algorithm
assuming a vertical casting direction. We define a part facet as an
“up-facet” with respect to a given direction ~d if the angle between
the facet’s outward facing surface normal and ~d is less than 90◦.
For a vertical casting direction, take ~d to be the +z axis. We call
the projection of two facets “overlapping” if the interiors of their
projections are non-disjoint (note that if the projections touch only
at a vertex or along an edge we do not call this “overlap”).

[Ahn et al. 2002] proved that a given part geometry is vertically
castable if and only if it is vertically monotone, i.e. there exists
no vertical line that intersects the part interior in more than one
disconnected interval. We observe that as a consequence, for a part
that is not castable and hence not vertically monotone, vertical lines
at the non-vertically-monotone locations will intersect the interior

2

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

of at least two up-facets. Thus if we project the up-facets of the
boundary representation of the part orthographically onto a plane
normal to the casting direction, the part is castable in this direction
if and only if none of the projections of the up-facets overlap.

Kwong observed that this test is simply a visibility test [Ahn et al.
2002; Kwong 1992]. If all the up-facets are completely visible
when the object is rendered with orthographic projection, looking
down with the eye-point above the object, the object is vertically
castable. Figure 2 shows a two dimensional example of this pro-
cess for a polygon (assume the edges are oriented with normals
pointing to the exterior of the polygon). If the part shown is viewed
from a point vertically above, the “up-edge” v1v2 will be occluded
by up-edges v5v6 and v6v7; thus this contour is not castable in the
vertical direction.

Figure 2: Two dimensional example of castability test

Thus determining whether or not a part is castable in a given di-
rection reduces to checking whether there are any partially or com-
pletely invisible up-facets when the object is looked upon from the
mold removal direction. We solve this visibility problem efficiently
with the help of graphics hardware. The inputs to the algorithm are
the part geometry and the casting direction ~d. The algorithm is as
follows:

1. Enable back face culling and
standard depth test

2. Set the view matrix parameters
a. orthographic projection
b. viewing direction -d
c. eye point offset +d from part bounds
d. screen parameters to encompass part bounds

3. Render the geometry
4. Keep z-buffer but clear frame-buffer
5. Re-render the geometry with depth test

set to GL_GREATER
6. Call an occlusion query to test if any

pixels were rendered in the second pass

After the first rendering pass (step 3), the z-buffer will hold the dis-
tance to the visible up-facet for each pixel. During the second pass
(step 5), only the (portions of) up-facets that were invisible in the
first pass will be rendered. Thus if any pixels are rendered in the
second pass, the object is not castable in direction ~d. On recent
graphics cards, we can efficiently check if any pixels were rendered
in this pass by using the graphics card’s occlusion query functional-
ity, rather than reading back the entire frame-buffer, making using
the frame-buffer more efficient than using the stencil-buffer, for ex-
ample. Figure 3 shows an example of the the frame-buffer after

step 3 and again after step 5 when the algorithm is run on the part
in Figure 1-b with a vertical casting direction.

Figure 3: Screen shots of the frame-buffer showing pixels rendered
after the first (top) and second pass (bottom) of the algorithm

Our implementation of this algorithm, running on a QuadroFX
3000 GPU, was able to test the castability of parts with over 20,000
facets in less than one millisecond per direction tested using a
256x256 frame-buffer (Figure 4). Our direction testing rate ranged
from 18,200 to 1,040 directions per second, on parts with 40 to
20,676 faces respectively. Our running times grow only linearly
with input size, in contrast to the O(n logn) growth rate of the Ahn
et al. algorithm for testing a direction for castability (by calculating
the object silhouette, projecting it orthographically, and determin-
ing if the projected silhouette would be self-intersecting after an
epsilon-shrinking operation). The running times for our algorithm
on this GPU were over 200 times faster compared to running on
the same machine with an older GPU that does not support vertex
and fragment programs, so that the CPU (AMD Athlon 1.8 GHz)
then had to execute them. Running just the first stage of the Ahn et
al. algorithm in software (extracting the silhouette) took five to six
times longer than our entire hardware-accelerated algorithm. Faster
silhouette extraction might be achieved using more sophisticated
sub-linear algorithms [Pop et al. 2001], but the O(n logn) plane
sweep intersection testing still dominates the theoretical complex-
ity. (GPU algorithms for silhouette extraction designed for render-
ing, such as [McGuire and Hughes 2004], do not seem appropriate
for this purpose due to long vertex programs that slow performance
for complex models and the difficulty of accurately performing the
epsilon-shrinking and self-intersection tests on a low resolution,
rendered silhouette.)

3

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

Figure 5: Undercuts in prototype part designs found and highlighted by our software (vertical removal direction)

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000

Number of Facets

M
il

li
se

co
nd

s
pe

r
di

re
ct

io
n

Figure 4: Running times (QuadroFX 3000 GPU, AMD Athlon 1.8
GHz CPU)

3.2 Highlighting non-castable features

Once it is determined that an object is not castable for a given mold-
removal direction, we would like to highlight the portions of the
surface that are not castable so that the designer can make the nec-
essary corrections. Up-facets which are rendered in the second pass
of the two pass algorithm along with down-facets which are invisi-
ble if the object is viewed from the opposite direction are the non-
castable facets, which should be highlighted. If the object is illumi-
nated by two light sources located at infinity in the directions ~d and
−~d, then the non-castable surfaces will be exactly those in shadow.
For the 2D example in Figure 2, if the object was illuminated from
vertically above and below, the edges v1v2, v8v1, and portions of
v7v8 would be in shadow; those edges are the undercut. We can
perform this highlighting in real time using the depth texture capa-
bility of graphics hardware as detailed below. Depth textures (a.k.a.
shadow textures) are textures which store depth values at each pixel
location, allowing a second depth test for each pixel as described in
[Everitt et al. 2003].

As a preprocessing step before we can display the part with its non-
castable features highlighted, we perform the following procedure
twice, once from the positive casting direction and once from the
negative casting direction. First the scene is projected orthographi-
cally with the camera placed above the part, aligned along the posi-
tive casting direction, and the view direction set towards the object.
The z-buffer obtained after this rendering pass is transferred to a
depth texture which will now hold the distance to the part for each

pixel of the resulting image. We also read back and store the or-
thogonal viewing matrix associated with this camera position for
later use in our vertex program. This procedure is repeated from
the opposite casting direction.

We can then allow the designer to rotate the object and examine the
undercuts in real time, accessing the same two depth textures previ-
ously calculated to highlight the currently visible undercuts for any
instantaneous viewing direction. We use a vertex program to trans-
form the vertices of each polygon by the two previously generated
orthogonal viewing transformations in turn. These two transformed
positions are stored as two texture coordinates for each vertex. Thus
after interpolation during rasterization, the first two components of
a pixel texture coordinate give the location of that pixel in the as-
sociated depth texture and the third component gives the depth of
that pixel from the positive (alternately, negative) casting direction
viewpoint that was used to generate that depth texture. A fragment
program checks the depth texture values of both sets of coordinates.
If the pixel depth is more than the depth texture value for both the
stored textures, then the pixel was occluded by some other geome-
try from both the positive and negative casting directions; we high-
light it in red to indicate that it is on a non-castable undercut. The
three parts shown in Figure 5 were rendered with this process.

3.3 Draft analysis

Although vertical part faces do not constitute undercuts, they make
it difficult to remove the part from its mold (primarily due to shrink-
age as the part cools). Thus during detail design a slight taper or
“draft” should be applied to all vertical walls to facilitate mold re-
moval. The angle the modified faces then make with the vertical,
typically one to three degrees, is called the draft angle. Draft anal-
ysis performed today in software can be accomplished more effi-
ciently using vertex programs in hardware.

If the designer specifies a minimum acceptable draft angle, we can
use a simple vertex program to highlight facets with insufficient
draft. To highlight the facets with draft less than a certain value,
we set the casting direction and the sine of the threshold draft angle
value as constant data for the vertex program. Within the program,
we take the dot product of the casting direction and the facet nor-
mal, and compare it to the stored sine of the threshold draft angle,
modifying the display color of the triangles with angle less than the
desired value.

We can also find the minimum draft angle for the entire part in one
off-screen rendering pass using a vertex program. The basic idea
is to use a vertex program to calculate the sine of the draft angle
for each triangle, then render a dummy triangle whose height is set
equal to this calculated value instead of the real triangle geometry.

4

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

The lowest such triangle will be for the smallest sine, correspond-
ing to the minimum draft angle. To implement this approach, when
we render the object during this pass, for the three vertices of every
triangle, we pass in the true triangle normal but dummy vertex posi-
tion values, (0,0,z), (1,0,z), (0,1,z) respectively. These dummy ver-
tices define a dummy triangle, initially identical for all the facets of
the part, which we set to be visible in a small frame-buffer with or-
thographic projection. In our vertex program, we again set the cast-
ing direction as constant data, and then take a dot product between
the normal of the facet (stored with the vertex) and the casting di-
rection, thus calculating the cosine of the angle between the facet
normal and the casting direction, equivalent to the sine of the draft
angle (Figure 6). For the output position value for the dummy ver-
tex, we change the z coordinate to the sine value calculated. Thus
for every input triangle we render a triangle in the frame-buffer with
the z value equal to the sine of the draft angle (Figure 7). We enable
the depth test to GL LESS and set our eye-point on the negative z
axis looking towards the origin with orthographic projection. At
the end of the rendering pass only the triangle corresponding to the
smallest draft angle will be visible. We then read back the z value
of just one pixel in the interior of the triangle from the frame-buffer
and calculate the minimum draft angle from that value.

Figure 6: The dot product of the normal and the casting direction
(here, +z) is the sine of the draft angle for a face

Figure 7: Dummy triangles rendered for every facet to find the min-
imum draft angle

Figure 8 shows a graph comparing running times of this GPU algo-
rithm for finding the minimum draft angle to a software implemen-
tation. The overhead associated with the GPU algorithm makes it
slower for testing very small parts, but for parts with more than a
couple hundred facets, the GPU algorithm is a clear win. Its incre-
mental cost for additional facets is negligible, while the software al-
gorithm time continues to grow linearly with the number of facets.

During the conceptual design phase, we would like to provide feed-
back about potential castable directions so that the designer can
choose the direction that is optimal. Knowing the minimum draft
angle for different casting directions allows us to find the one that
maximizes minimum draft, for example. But we only want to com-
pare directions that are actually castable.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

of Facets

C
al

cu
la

tio
n

T
im

e
(s

ec
.)

Software − Based
Hardware − Based

Figure 8: Performance of draft analysis algorithm

4 Finding castable directions

In this section we describe two algorithms we have developed and
implemented to choose candidate directions to test for castability.
The key to making these algorithms efficient is to identify groups
of candidate directions such that if any one direction in the group is
not castable, none are, or if any one is castable, all are.

Both our algorithms make use of a Gaussian sphere, a unit sphere
centered at the origin such that every point on it defines a direc-
tion in Euclidean 3-space (a unit vector with its tail at the origin
and its head on the surface of the sphere). A planar facet defines
a great circle on a Gaussian sphere which is perpendicular to the
normal vector of the plane. This great circle divides the sphere in
two hemispherical regions where the corresponding facet is either
always an up-facet or always a down-facet with respect to the set of
directions contained in each hemisphere.

4.1 Quadtree algorithm

Our first algorithm runs on the GPU. It is inspired by the theoretical
algorithm of Ahn et al., who prove that all combinatorially distinct
casting directions correspond to 0-, 1-, or 2-cells in an arrangement
of great circles on a Gaussian sphere [Ahn et al. 2002]. Every facet
normal and normal of the triangle formed by every edge-vertex pair
of the part generates a great circle in their arrangement. These great
circles correspond to the directions where a part face changes from
front-facing to back-facing (directions contained in the plane of the
face), and directions where a projection of one part face potentially
changes from occluding to not occluding (or vice versa) another
part face (directions contained in the planes through an edge-vertex
pair from separate triangles).

We observe that there is no need to add the great circles correspond-
ing to face normals to the arrangement, since these are actually a
subset of the normals of the triangles defined by edge-vertex pairs.
We reduce the number of great circles further by merging adjacent
coplanar faces and omitting redundant and non-interacting edge-
vertex pairs (those where neither of the facets adjacent to the edge
can be up-facets simultaneously with any of the facets adjacent to
the vertex being up-facets).

5

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

Figure 9: Arrangement of lines in a quadtree leaf node

We project the remaining great circles on a plane tangent to the
sphere to obtain an arrangement of lines. We subdivide the line ar-
rangement in a quadtree to obtain 32 lines per quadtree leaf node
(because our graphics card has 8 bits per color channel and we al-
locate one bit per line; for the latest graphics cards with 32 bits per
color channel we would use 128 lines per quadtree leaf node). We
then construct the arrangement in each such leaf node by rendering
a half-space for each line with a different color, blending the col-
ors by using the GL BLEND operation (equivalent to a bitwise-or).
Figure 9 shows an arrangement in one quadtree leaf node. Thus
each of the up to 32 ∗ (32 + 1)/2 + 1 = 529 2-cells will be ren-
dered in a different color. We select a random sequence of 1,024
pixel locations in each leaf node, about twice the maximum possi-
ble number of 2-cells, and keep the points having different colors
(corresponding to distinct 2-cells in the arrangement). While this
certainly does not guarantee that we will find a point in each 2-cell,
we found rapidly diminishing returns if we increased the number
of initial points tested; for example, doubling the number of points
typically only increased the number of cells found by one or two.
Since the implementation is only approximate to begin with, we
decided to forego the additional overhead. If while building the
quadtree, a cell size falls below a set tolerance limit before we’ve
reduced the number of lines, as will always happen if more than 32
lines go through the same point, we stop subdividing and just pick
random points in the cell. In either case, we test the directions cor-
responding to the points, along with face normal and axis directions
(which are good heuristic candidates), for castability.

Figure 11: Sample part with castable directions shown by the
(lighter) green dots on the Gaussian sphere. Non-castable direc-
tions are shown by (darker) red dots.

Figure 11 shows a part, alongside the directions tested displayed on
the Gaussian sphere. The (lighter) green dots on the sphere repre-
sent the castable directions found and the (darker) red dots represent
the directions which were checked and found non-castable. Table
10 shows timing data for additional parts we tested.

Note that in addition to the fact that we cannot guarantee that we
will test a direction in the interior of all the 2-cells, this algorithm
ignores the 1-cells and 0-cells, which in some cases contain the only
castable directions. Also we found that the speed of frame-buffer
read-back was too slow to be useful for practical applications with
parts with a large number of facets.

4.2 Convex hull intersection algorithm

Our second, more accurate algorithm makes use of convex hulls
on the Gaussian sphere. A spherical convex hull (C.H.) of a set of
points also on the sphere is a convex spherical polygon bounded by
great circular arcs [Gan et al. 1994]. The set of directions in which a
planar facet A occludes another planar facet B is called the inacces-
sibility region of B due to A; it can be calculated exactly and repre-
sented as a spherical convex hull on the Gaussian sphere [Dhaliwal
et al. 2003]. The inaccessibility regions of A due to B and B due to
A lie diametrically opposite to each other on the Gaussian sphere,
with the corresponding convex hull vertices projected through the
origin.

Recall from section 3 that an object is non-castable in a given direc-
tion only if any two up-facets overlap each other when projected or-
thographically on a plane normal to that direction. Thus only pairs
of facets which can potentially become up-facets simultaneously,
with their projections also overlapping (non-disjoint interiors) each
other, could affect the castability of the object in any direction. We
call such pairs of facets “potentially interacting” facets. A facet di-
vides space into two half spaces separated by the plane containing
the facet. We call the closed half space on the side where the facet
normal points the positive half space and the other closed half space
the negative half space.

A pair of potentially interacting facets will make the object non-
castable in the directions lying in the inaccessibility region of the
facets due to each other. Taking this into consideration, before
calculating convex hulls to find inaccessibility regions of pairs of
facets, we can first eliminate pairs that we know can never interact.
The following observation allows us to identify many such pairs a
priori.

Lemma: If two facets A and B both lie entirely in one of the half
spaces defined by the plane of the other, and these half spaces have
the same sign, then those two facets cannot interact. In particular
if A lies in the positive (alternately, negative) half space of B and
B lies in the positive (alternately, negative) half space of A, then A
and B cannot interact.

Proof. Consider two facets A and B, each of which lies entirely
in the negative half space of the other (see Figure 12). Call the
great circles on the Gaussian sphere perpendicular to the normal
vectors of A and B CA and CB respectively. Each great circle di-
vides the sphere in two open hemispheres, within each of which all
directions make the corresponding facet either an up-facet (the up-
hemisphere of the facet) or a down-facet (the down-hemisphere of
the facet). The region within which both the facets are up-facets is
the intersection of the up-hemispheres of A and B. Call this region
R. We will show that the projections of A and B along any direction
in region R cannot overlap.

6

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

No. facets 28 40 80 328
No. great circles 128 258 863 1832

No. directions tested 6,085 17,418 283,904 476,646
No. castable

directions found 1 2 34,758 120,299
Time (secs) 2.58 6.89 78 200

Figure 10: Performance data for quadtree algorithm

Figure 12: (a) A pair of noninteracting triangles (b) Gaussian sphere
with great circles corresponding to the pair of triangles

Call the line of intersection of the two planes containing A and B
respectively LAB. We will show that for projection directions in the
region R, the projection of LAB will always separate the projections
of A and B; thus they cannot overlap in this region where they are
both up-facets. We know LAB does not overlap A, because A is
entirely in the (closed) negative half space of B, and vice versa, so
LAB overlaps neither facet. Because LAB lies in the same plane as A,
their projections can never overlap except for projection directions
parallel to this plane, the directions on CA. Similarly the projections
of LAB and B cannot overlap except for projection directions on CB.
Thus for projection directions within the up-hemisphere of A, the

projection of A will always lie to the same side of the projection of
LAB; it will only cross over the projection of LAB when we move
from the up-hemisphere to the down-hemisphere. Likewise for B.
Thus we need only confirm that for some direction in region R the
projections of A and B are on opposite sides of the projection of
LAB and it will hold true for all directions within region R.

Now consider a vector that is the average of the facet normals of
A and B, as shown in the figure. It is perpendicular to LAB and
can be placed on the plane which is the angle bisector between the
half planes of A and B, bounded by LAB, that contain the respective
facets. This vector lies in the region R on the Gaussian sphere. The
projections of A and B along this vector lie on opposite sides of the
projection of LAB, since the projections of the respective containing
half planes are on opposite sides. Thus the projections of A and
B will always be on opposite sides of the projection of LAB for all
projection directions in region R, never overlapping in R, so they
are not potentially interacting. The case where two facets each lie
in the positive half space of the other is analogous.

Note that for convex objects, which are equivalent to their convex
hulls, all the facets are in the negative half space of all other facets.
Thus our test correctly determines that no pair of its facets is poten-
tially interacting; a convex object is castable in any direction.

Now imagine moving over the surface of the Gaussian sphere, con-
sidering different casting directions. The only event that changes
the castability of our current direction is when a pair of potentially
interacting facets start or stop occluding each other. Thus the casta-
bility could change only when the current direction crosses one of
the arcs bounding the accessibility regions of the potentially inter-
acting facets. These arcs divide the Gaussian sphere into connected
regions where the castability does not change in the interior of any
region. Furthermore, if the object is castable in the directions inte-
rior to a region, then it is also castable in directions on its bound-
aries, because arcs that form the boundaries of the inaccessibility
regions represent directions where the corresponding projections of
the two potentially interacting facets just touch but have zero area
overlap. Similarly if the object is castable in directions correspond-
ing to the interior points of the arc it is also castable in the directions
corresponding to the arc boundaries, the two vertices of the arc seg-
ment. On the other hand, note that the object may be castable in
directions along an arc separating two regions that are not them-
selves castable, and it may be castable in the directions correspond-
ing to the vertices of an arc whose other (interior) points don’t cor-
respond to castable directions. Thus to check whether there exists
any castable direction for the object, it suffices to test the castability
at the vertices of the connected regions. These vertices may be the

7

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

convex hull vertices or they may be new vertices introduced by the
intersection of the original convex hull arcs.

Unlike the previous algorithm, this algorithm is theoretically guar-
anteed to include a castable direction in the set of candidate direc-
tions if any castable direction exists. Of course, in practice, there
will be roundoff error unless it is implemented using exact arith-
metic.

This algorithm can be summarized as follows:

for every pair of triangles
if that pair is potentially interacting
calculate its inaccessibility region C.H.
store its bounding great circular arcs

endif
endfor
calculate intersections of all arcs
test castability of

1. C.H. vertices
2. intersections

4.2.1 Implementation

We have implemented the above algorithm in C++ on Linux. For
every pair of triangular facets in the file, we determine if that pair
is potentially interacting by checking whether they are coplanar or
in the same signed half-space relative to each other as previously
described. On average this reduced the number of triangle pairs by
about 75% in the parts we tested (see Figure 15, for which examples
71-90% of the potentially interacting pairs were eliminated from
further testing). Unfortunately, the number of potentially intersect-
ing pairs is still O(n2), for a potential total of O(n4) intersections to
test, but since we are intersecting only segments, not whole lines, it
is unlikely we would see that many intersections in practice.

If a pair of facets is potentially interacting, we next find the inacces-
sibility region of the two facets. This region is a spherical convex
hull of points on the Gaussian sphere defined by the set of nine vec-
tors created from connecting each vertex from one facet to every
vertex in the other facet [Dhaliwal et al. 2003]. Again, we normal-
ize the vectors and place their tails at the origin in the center of a
sphere. We then project the vectors onto points on a plane placed
tangent to the sphere at the pole of a hemisphere containing the nine
vectors, so that their spherical convex hull projects with no overlap.
The vectors will always be co-hemispherical assuming our origi-
nal object boundary was not self-intersecting. This follows from
the fact that for any two triangles with disjoint interiors, there ex-
ists a separating plane such that each triangle is in opposite closed
half-spaces defined by this plane. The vectors all originate from the
same side of the separating plane and cross to the other side, so all
the vectors map to points on the same hemisphere defined by the
great circle corresponding to the separating plane normal. The ex-
istence of a separating plane for two disjoint convex facets, and the
fact that it can be found efficiently because a separating plane ex-
ists parallel to one of the facets or parallel to an edge of each facet,
follows from the separating plane theorem [Gottschalk 1998]. On
the plane, we calculate a standard 2D convex hull, the vertices of
which we project back to the sphere and connect with great circular
arcs with the same connectivity, giving us the spherical convex hull
[Gan et al. 1994].

We tried three different convex hull calculation approaches. The
first was the gift-wrapping convex hull algorithm as described in
[de Berg et al. 2000]. Since we are always using sets of only nine

points, a simple, brute force approach like gift-wrapping would
seem adequate. However, for pairs of nearly coplanar facets, the
projections of the nine vectors from one facet’s vertices to the
other’s vertices will be nearly co-great-circular. Thus their projec-
tions onto the plane will be nearly collinear. Gift-wrapping, which
works by comparing the signs of the cross products of vectors be-
tween candidate convex hull points, can become unstable when
points are very close to collinear. (The issue is with numerical im-
precision that changes the sign of the cross products, since the sign
indicates which side of another line a point is on. This qualitative
error answering a sidedness query can lead to mutually impossible
results when calculating the cross products with different subsets of
the collinear points, leading to an infinite loop or a self-intersecting
convex hull.) Given that the number of these cases was large in a
significant number of our test geometries, we next turned to exact
arithmetic.

We interfaced with two convex hull algorithm implementations
from the Computational Geometry Algorithms Library (CGAL)
[cgal.org 2004], Bykat’s non-recursive version of quickhull as well
as Akl and Toussaint’s algorithm. We used the Cartesian kernel
with the MP Float (multi-precision float) number type, which can
represent floats with arbitrary precision and uses exact arithmetic
for numerical operations. As expected these implementations were
much slower due to the overhead of exact arithmetic, and we found
to our surprise that for several of the sets of nine input points we
generated they ran out of memory (using 1 GB of RAM and 2 GB
of swap space), again due to sets of near-collinear points.

We had the best luck when we implemented Graham’s scan algo-
rithm as described in [O’Rourke 1998] to calculate the convex hull.
It sorts the input points by angle from a pivot, deleting from the
list those points with equal angle but smaller radius from the pivot
than another point in the set, and builds the hull based on the final
sorted list. Graham’s scan is therefore well suited to handle data
sets with collinear input points because small quantitative round-
off errors calculating the angles will only cause small quantitative
errors in the results, not mutually impossible answers to sidedness
queries.

We verified that from every pair of triangles, we get two diamet-
rically opposite inaccessibility regions. Thus, when all the convex
hulls are added on the sphere, the arrangement obtained is symmet-
ric about the center. Thus, for further computation it is sufficient to
consider the portions of the arc segments that are in any one hemi-
sphere.

Again, it is simpler to calculate great circular arc intersections if
we project them to a plane, where this time the problem maps to an
intersection of straight line segments. To avoid points projecting to
infinity and to make more uniform use of the floating point preci-
sion, we actually project onto a circumscribing, axis-aligned hemi-
cube, specifically, the cube faces corresponding to the x=1, y=1 and
z=1 planes. We project each convex hull to these hemi-cube faces,
splitting segments across the faces if they project to more than one,
and clipping at the boundaries. Thus for every face we obtain a set
of straight line segments. Figure 13 shows this process for a pair of
triangles.

We first check the vertices of these lines to see if they represent
castable directions. If none of the vertices are castable, then we
find the intersections of the lines and check those intersections for
castability (Figure 14). If we are only interested in finding whether
the object is castable, we can stop after we find a castable direction,
otherwise we can continue until all the line vertices and their inter-
sections are checked. Again, we initially tried CGAL for calculat-
ing the intersections, but found that we ran out of memory for more
complex inputs (presumably the large number of overlapping and

8

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

Figure 13: (a) A pair of triangles (b) Points on the Gaussian sphere
obtained from the pair of triangles (c) Spherical convex hull ob-
tained on the sphere (d) Projecting the convex hull on a circum-
scribing cube (e) The convex hull obtained on the faces of the cube
after splitting.

collinear-up-to-our-limited-numerical-precision arc segments were
the problem), so we reverted to a faster floating point arithmetic
intersection test.

Details of running times to find a castable direction for different
parts are given in Figure 15. The convex hull calculations for the
more complex parts take from seconds to minutes; castability test-
ing time depends on how many directions we actually end up check-
ing before finding one that is feasible. The final part in the table
was the most challenging with only one castable direction, which
our algorithm only found after about fifteen minutes of processing.

5 Future work

We will continue working to optimize our original proof-of-concept
implementation of the convex hull intersection algorithm. Cur-
rently we test all the vertices we generate, even those that lie in

Figure 14: Points of intersections of lines on the hemi-cube faces

the interior of an inaccessibility region of another pair of facets. Be-
cause the inaccessibility regions are regions of non-castability, such
vertices will always be non-castable. We will investigate whether
the time it takes to identify that a vertex is interior to another convex
hull is less than the time we can save by not checking the castabil-
ity of such vertices. A promising approach could be to find the
(non-regularized) union of the interiors of the non-castable regions
and only test vertices of the union. An alternate approach to reduce
the running time for geometries that are approximations to curved
surfaces would be to look at the original control polygon geometry.

Another area of interest for future work is multi-piece molds with
cores and inserts. Our algorithm for checking for castability can be
easily extended to consider additional removal directions for side
pulls if the designer specifies the directions. If no removal direc-
tion guidance is given, we suspect the problem of finding a mold
design that is guaranteed to minimize the number of mold pieces is
NP-hard. But we believe that GPU-based algorithms can be used
within heuristic approaches to facilitate the design of parts to be
manufactured in multi-piece molds as well.

6 Acknowledgments

The graphics card used in this work was donated by NVIDIA. The
authors were supported in part by UC MICRO. We would also like
to thank the reviewers for comments that improved the exposition.

References

AHN, H.-K., DE BERG, M., BOSE, P., CHENG, S.-W.,
HALPERIN, D., MATOUSEK, J., AND SCHWARZKOPF, O.
2002. Separating an object from its cast. Computer-Aided De-
sign 34, 547–59.

BALASUBRAMANIAM, M., LAXMIPRASAD, P., SARMA, S., AND
SHAIKH, Z. 2000. Generating 5-axis NC roughing paths directly
from a tessellated representation. Computer-Aided Design 32, 4
(April), 261–77.

9

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

No. facets 28 80 328 1994 4634
No. pairs 378 3,160 53,628 1,987,021 10,734,661

No. potentially
interacting pairs 140 749 15,228 202,050 3,089,765
Time (secs) C.H.

calculations .01 .04 .78 12.37 184.35
Time (secs)

castability testing <.01 <.01 <.01 .09 582.16
No. directions

tested 1 7 26 358 1,470,416

Figure 15: Running time for Convex Hull Intersection Algorithm

CGAL.ORG, 2004. Computational Geometry Algorithms Library.
http://www.cgal.org.

CHEN, L.-L., AND CHOU, S.-Y. 1995. Partial Visibility for Se-
lecting a Parting Direction in Mold and Die Design. Journal of
Manufacturing Systems 14, 5, 319–330.

CHEN, Y., AND ROSEN, D. W. 2003. A reverse glue approach to
automated construction of multi-piece molds. Journal of Com-
puting and Information Science in Engineering 3, 3, 219–230.

CHEN, L.-L., CHOU, S.-Y., AND WOO, T. C. 1993. Parting
directions for mould and die design. Computer-Aided Design
25, 12 (December), 762–768.

CHEN, Y. H. 1997. Determining parting direction based on mini-
mum bounding box and fuzzy logics. Int. J. Mach. Tools Manu-
fact. 37, 9, 1189–1199.

CHEN, Y. 2001. Computer-Aided Design for Rapid Tooling: Meth-
ods for Mold Design and Design-for-Manufacture. PhD thesis,
Georgia Institute of Technology.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND
SCHWARZKOPF, O. 2000. Computational Geometry: Algo-
rithms and Applications, second ed. Springer, Berlin.

DHALIWAL, S., GUPTA, S., HUANG, J., AND KUMAR, M. 2001.
A feature based approach to automated design of multi-piece
sacrificial molds. ASME Journal of Computing and Information
Science in Engineering 1, 3, 225–234.

DHALIWAL, S., GUPTA, S., HUANG, J., AND PRIYADARSHI, A.
2003. Algorithms for computing global accessiblity cones. Jour-
nal of Computing and Information Science in Engineering 3, 3
(September), 200–209.

ELBER, G., CHEN, X., AND COHEN, E. 2004. Mold Accessibility
via Gauss Map Analysis. In Proceedings of Shape Modeling
International, 263–72.

EVERITT, C., REGE, A., AND CEBENOYAN, C., 2003. Interactive
geometric and scientific computation using graphics hardware.
ACM SIGGRAPH 2003 Course #11 Notes, July.

FERNANDO, R. 2004. GPU Gems Programming Techniques, Tips
amd Tricks for Real Time Graphics Hardware. Addison-Wesley.

FU, M. W., FUH, J. Y. H., AND NEE, A. Y. C. 1999. Gener-
ation of optimal parting direction based on undercut features in
injection molded parts. IIE Transactions 31, 947–955.

FU, M. W., FUH, J. Y. H., AND NEE, A. Y. C. 1999. Un-
dercut feature recognition in an injection mould design system.
Computer-Aided Design 31, 12 (October), 777–790.

GAN, J. G., WOO, T. C., AND TANG, K. 1994. Spherical maps:
their construction, properties and approximation. Journal of Me-
chanical Design 116, 2 (June), 357–363.

GANTER, M. A., AND SKOGLUND, P. A. 1991. Feature extrac-
tion for casting core development. In 17th Design Automation
Conference presented at the 1991 ASME Design Technical Con-
ferences, American Society of Mechanical Engineers, 93–100.

GOTTSCHALK, S. 1998. Collision Queries using Oriented Bound-
ing Boxes. PhD thesis, University of North Carolina, Chapel
Hill, Department of Computer Science.

HUI, K. C., AND TAN, S. T. 1992. Mould design with sweep op-
erations - a heuristic search approach. Computer-Aided Design
24, 2 (February), 81–91.

INUI, M., AND KAKIO, R. 2000. Fast visualization of NC milling
result using graphics acceleration hardware. In IEEE Interna-
tional Conference on Robotics and Automation, IEEE, 3089–94.

INUI, M. 2003. Fast inverse offset computation using polygon
rendering hardware. Computer Aided Design 35, 2 (February),
191–201.

KHARDEKAR, R., AND MCMAINS, S. 2004. Finding mold re-
moval directions using graphics hardware. In ACM Workshop
on General Purpose Computing on Graphics Processors, C–19.
(abstract).

KONIG, A. H., AND GROLLER, E. 1998. Real time simulation
and visualization of NC milling processes for inhomogeneous
materials on low-end graphics hardware. In Computer Graphics
International, IEEE, 338–49.

KWONG, K. 1992. Computer-aided parting line and parting sur-
face generation in mould design. PhD thesis, The University of
Hong Kong, Hong Kong.

LIN, M. C., AND MANOCHA, D. 2003. SIGGRAPH 2003 Course
Notes, vol. 11. ACM SIGGRAPH, July, ch. Interactive Geomet-
ric and Scientific Computations Using Graphics Hardware, 1–6.

MCGUIRE, M., AND HUGHES, J. F. 2004. Hardware-determined
feature edges. In Proceedings of the 3rd international sym-
posium on non-photorealistic animation and rendering, ACM
Press, 35–147.

10

to appear in the 2005 ACM Symposium on Solid and Physical Modeling (SPM)

MCMAINS, S., AND CHEN, X. 2004. Determining Moldability
and Parting Directions for Polygons with Curved Edges. In In-
ternational Mechanical Engineering Congress and Exposition,
ASME, IMECE2004–62227.

O’ROURKE, J. 1998. Computational Geometry in C (2nd Edition).
Springer.

POP, M., DUNCAN, C., BAREQUET, G., GOODRICH, M.,
HUANG, W., AND KUMAR, S. 2001. Efficient perspective-
accurate silhouette computation and applications. In Proceed-
ings of the seventeenth annual symposium on computational ge-
ometry, ACM Press, 60–68.

RAPPAPORT, D., AND ROSENBLOOM, A. 1994. Moldable and
castable polygons. Computational Geometry: Theory and Ap-
plications 4, 219–233.

RAVI, B., AND SRINIVASAN, M. N. 1990. Decision criteria for
computer-aided parting surface design. Computer-Aided Design
22, 11–18.

REQUICHA, A. A. G. 1980. Representations for Rigid Solids:
Theory, Methods, and Systems. ACM Computing Surveys (De-
cember), 437–464.

SAITO, T., AND TAKAHASHI, T. 1991. NC machining with G-
buffer method. SIGGRAPH 91 25, 4 (July), 207–16.

SPITZ, S., SPYRIDI, A., AND REQUICHA, A. 1999. Accessibility
analysis for planning of dimensional inspection with coordinate
measuring machines. IEEE Transactions on Robotics and Au-
tomation, 714–27.

STAMPFL, J., LIU, H.-C., NAM, S. W., SAKAMOTO, K., TSURU,
H., KANG, S., COOPER, A. G., NICKEL, A., AND PRINZ,
F. B. 2002. Rapid prototyping and manufacturing by gelcasting
of metallic and ceramic slurries. Materials Science & Engineer-
ing. 334, 1-2 (Sep), 187–192.

WONG, T., TAN, S. T., AND SZE, W. S. 1998. Parting line forma-
tion by slicing a 3D CAD model. Engineering with Computers
14, 4, 330–343.

WOO, T. C. 1994. Visibility maps and spherical algorithms.
Computer-Aided Design 26, 1 (January).

WUERGER, D., AND GADH, R. 1997. Virtual Prototyping of Die
Design Part One: Theory and Formulation. Concurrent Engi-
neering : Research and Applications 5, 4 (December), 307–315.

WUERGER, D., AND GADH, R. 1997. Virtual Prototyping of
Die Design Part Two: Algorithmic, Computational, and Prac-
tical Considerations. Concurrent Engineering : Research and
Applications 5, 4 (December), 317–326.

YE, X. G., FUH, J. Y. H., AND LEE, K. S. 2001. A hybrid
method for recognition of undercut features from moulded parts.
Computer-Aided Design 33, 1023–1034.

YIN, Z., DING, H., AND XIONG, Y. 2001. Virtual prototyping
of mold design: geometric mouldability analysis for near-net-
shape manufactured parts by feature recognition and geometric
reasoning. Computer-Aided Design 33, 137–154.

11

