Layered Manufacturing

Sara McMains
Layered Manufacturing (LM)
a.k.a. Solid Freeform Fabrication (SFF)
a.k.a. Rapid Prototyping (RP)

• Automated build of complex 3D shapes from 2.5-D layers
Industrial Applications of LM

- Design review
- Positives for molds
- Functional testing
Medical Applications of LM

- Prosthetics
- Pharmaceuticals
 - Micro-structure control
- Tissue engineering
Educational Applications of LM

- Scientific Visualization
- Topological Models
- Tactile Mathematics

San Diego Harbor
(Mike Bailey)

Hyperbolic paraboloid w/ Braille annotations (Stewart Dickson)

Klein Bottle Skeleton
(Carlo Séquin)
Artistic Applications of LM

- Jewelry
- Sculpture

“Ora Squared”
(Bathsheba Grossman)
LM vs. Conventional Manufacturing

- Subtractive
- Net shape
- Additive
Conventional Manufacturing

• Subtractive
 – Start with simple stock
 – Remove unwanted volume
 – E.g.
 • Machining

Delcam
Conventional Manufacturing

• Net shape
 – Start with simple stock
 – Reshape in die or mold
 – E.g.
 • Forging
 • Molding
 • Casting
Conventional Manufacturing

• Additive
 – Combine complex sub-units
 – E.g.
 • Welding
Conventional Manufacturing

• Appropriate for production runs
 – Incremental costs low
• Not appropriate for small batch sizes or prototyping
 – Complex process planning
 – Special purpose tooling
 – Set-up costs high
 – Long lead times
Layered Manufacturing Characteristics

- Automated process planning based on CAD model
 - Short lead times
- No special purpose tooling
- Highly complex parts economical at low production numbers
- Perfect for prototyping
Benefits of Layers

• Layering manufacturing eliminates constraints
 – Tool clearance constraints
 – Mold releasability constraints
 – Fixture planning constraints
Layers

• 2.5-D slices through model
 – Slice interior is part geometry
 – Slice exterior may function as:
 • Fixture
 • Support
Support Handling (a)

• Supports with planned geometry
 – Identify overhanging features
 – Selectively build supports beneath
 – Usually same material as part
 • Less dense for ease of removal
Support Handling (b)

• Layer negative geometry is support
 – Either:
 • Different sacrificial material
 • Or same material in powder form
 • Or same material with weaker structure
Scan Patterns

Vector-scan

Raster-scan
Process Techniques

• Photopolymers
 – Photolithography (vector)
 – Photo-masking (raster)

• Thermoplastic Deposition
 – Extrusion (vector)
 – Ink-jet (raster)

• Lamination

• Powder based
 – Sintering (vector)
 – 3D Printing (raster)
Stereolithography (SLA)

- First commercial layered manufacturing technology (1988)
- Photo-curable liquid resin

www.3dsystems.com
Stereolithography
Stereolithography

• Pre-process
 – Orient part
 – Choose slice thickness
 – Slice parts and plan supports
Stereolithography

- Process
 - Position build platform just below liquid resin surface
 - Smooth surface with recoater blade
 - Scan layer outline, loose hatch layer interior with laser
 - Lower build platform for next layer
Stereolithography

• Post-process
 – Raise part to drain liquid
 • (except liquid trapped by loose hatch)
 – Remove supports
 – Rinse in isopropanol, water
 – Dry with air hose
 – Post-cure in UV oven
Stereolithography

- Characteristics
 - Slow
 - Supports must be removed by hand
 - Lab environment necessary
 - Trained operator
 - Lasers expensive
 - Little material choice
 - Parts can be brittle, fragile
Stereolithography

• Characteristics
 – High accuracy
 • Layer thickness .001-.006”
 • Minimum feature size .003-.012”
 – Large build volume
 • Up to 20x20x23”
 – Investment casting build styles
 – Brittleness useful for certain tooling
The STL Format

- De-facto industry standard
- Boundary representation
- Triangular facets
 - Explicit vertex coordinates (not shared)
 - Counter-clockwise enumeration
- Surface normal for each facet
 - Points to exterior of object (supposedly)
STL File of a Cube

<table>
<thead>
<tr>
<th>Face</th>
<th>Normal Vector</th>
<th>Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000000e+00 0.000000e+00 1.000000e+00</td>
<td>1.000000e+00 -1.000000e+00 -1.000000e+00
1.000000e+00 1.000000e+00 -1.000000e+00
1.000000e+00 1.000000e+00 1.000000e+00</td>
</tr>
<tr>
<td>2</td>
<td>1.000000e+00 0.000000e+00 0.000000e+00</td>
<td>-1.000000e+00 1.000000e+00 -1.000000e+00
-1.000000e+00 1.000000e+00 1.000000e+00
-1.000000e+00 1.000000e+00 1.000000e+00</td>
</tr>
<tr>
<td>3</td>
<td>0.000000e+00 1.000000e+00 0.000000e+00</td>
<td>-1.000000e+00 -1.000000e+00 -1.000000e+00
-1.000000e+00 -1.000000e+00 1.000000e+00
1.000000e+00 -1.000000e+00 -1.000000e+00</td>
</tr>
<tr>
<td>4</td>
<td>0.000000e+00 -1.000000e+00 1.000000e+00</td>
<td>-1.000000e+00 -1.000000e+00 -1.000000e+00
-1.000000e+00 -1.000000e+00 1.000000e+00
1.000000e+00 -1.000000e+00 -1.000000e+00</td>
</tr>
<tr>
<td>5</td>
<td>-1.000000e+00 0.000000e+00 0.000000e+00</td>
<td>-1.000000e+00 -1.000000e+00 -1.000000e+00
-1.000000e+00 -1.000000e+00 1.000000e+00
1.000000e+00 -1.000000e+00 -1.000000e+00</td>
</tr>
<tr>
<td>6</td>
<td>-1.000000e+00 0.000000e+00 0.000000e+00</td>
<td>-1.000000e+00 -1.000000e+00 -1.000000e+00
-1.000000e+00 -1.000000e+00 1.000000e+00
1.000000e+00 -1.000000e+00 -1.000000e+00</td>
</tr>
</tbody>
</table>
STL Shortcomings

• Redundant
 – Repeats vertex coordinates
 – Exterior specification

• No way to specify solid or surface properties

• No units

• No connectivity ("topology") information
 – Designer’s intent unclear
 – Cracks

1.1234569
1.1234570
Scanning

• When a good build goes bad…

Slice 463
Model Requirements

• Water-tight boundary
 – No cracks
• No T-junctions
 – Vertex-to-vertex rule
• Consistent triangle orientations
• Positive coordinates
 – Some systems automatically translate part