Problem 1 (Schodinger Equation)
The 1D time-independent Schrédinger Equation is defined as
h> d*y(x
NIV, pew ()= B ()
where fiis Planck’s constant #/2w, m is the mass of a particle. U(x) is the potential energy. and E
is the system energy. To solve the 1D Schrédinger Equation, consider an electron, which is
confined to move back and forth between rigid walls that are a distance. (, apart from one
another. Consider also de Broglie’s wave particle duality: the electron and its motion can be
described by a wave function . Classically. this situation is analogous to standing-wave
oscillations of a stretched string clamped at each end between massive supports, which are a
distance ¢ apart. The supports constrain the vibrating string such that the nodes are always at
these points, thus limiting the possible wavelengths of the standing waves.
a) What are the possible wavelengths of the standing waves in the string?

A possible solution of the standing wave is
y(x) = Asin kx + B cos kx
Boundary conditions are applied to the possible solution.
At x=0: y(0)=B=0
At x=1: y(l)=Asinkl =0 B=0

From the boundary condition at x=1, k:T where n is 1,2, 3, ...
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Therefore, the possible wavelength is — where n is 1,2, 3, ...
n

b) Each point on the stretched string oscillations with simple harmonic motion. Let vy, be
the maximum amplitude anywhere along the string. Derive the amplitude function of the
standing wave? Le. Show that y,(x) depend on x, n. and /, where n=1, 2,3, ...?

Since the problem defined that the standing wave, yn(x)zAsin(%xj, has the maximum

amplitude y . . the wave function (the amplitude function) is

Y,(X) =y, sin (% xj



¢) The string is analogous to an electromagnetic wave frapped between two perfectly
reflecting mirrors that are separated by a distance . The electromagnetic wave will also
exhibit a standing wave pattern. What is the amplitude function E,(x) of the
electromagnetic wave?

E(x,t)=E  sin(kx — wt)
. niw .
From the boundary condition, k =T where n is 1, 2, 3, ...

Therefore, E (x,t)=FE, Sin(%x —t)

d) Now go back to our original goal which is to solve the 1D time-independent Schrédinger
Equation. What is y?

In a one dimensional infinite square well, the potential U(x)=0in the well.
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C;xyzl =—k*w where k= 2Z1E

A possible solution of the above equation is
w(x) = Asinkx + B cos kx
Boundary conditions are applied to the possible solution.
At x=0: w(0)=B=0
At x=1: w(l)=Asinkl =0 “B=0
From the boundary condition at x=1[, kKl =nz where n is 1,2, 3, ..

Therefore, the wave function is
. (nmw
l//n(X) = ASIH[TXJ
By normalization,

[y, ) Pdx=1 > y,(x)= %sin(%xj



Therefore, the entire wave packet is

y(x)=> ay,(x)=q, \E sin (? X) where a, = jol v,y (x)dx

e) Quantization of the wavelength of a particle trapped between rigid walls leads to the
quantization of its kinetic energy. Show that
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From the Schrodinger equation 1/2/ =—k*w where k= e ,
dx h
The energy of the wave function is
272
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From the boundary condition at x=1[, kIl =nz where n is 1,2, 3, ..

Therefore, the quantized energy is
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f) Plot E, (in normalized units, assuming the same mass) vs » for / =5 pm and 5 nm
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Problem 2 (QD Synthesis)
Name conditions that can control the size of quantum dots and also the trends that relate to

quantum dot size.

In colloidal synthesis, the size of quantum dots can be affected by temperature, concentration of
precursor, reaction time, etc. As shown in the below figure, longer reaction of colloid growth

increases the size of the quantum dots.
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[C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci. 30, 545, 2000.]

Larger dots emit redder (lower energy) light, and smaller dots emit bluer (higher energy) light.
The color is related to the energy levels of the quantum dot; the band gap energy determines the
energy (wavelength), and it is inversely proportional to the size of the quantum dot. Since larger
quantum dots have more energy levels, they are more closely spaced. Hence, the larger quantum

dot emits less energy which is closer to red end of the spectrum
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Figure 1: Fluorescence emitted from quantum dols
Blue fluorescence can be emitted from small particles
of approximately 2 nm in diameter, gréen from -3 nm
particles, yellow from ~4 nm particles, and red from
large particles of ~5 nm

The wavelength of the excitation ight is 365 nm.
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Figure 2: Fluorescence spectra depending on the
size of quantum dots



Problem 3 (QD Application)
Describe five applications of bio-conjugated quantum dots. Why are quantum dots preferred?

1. Cell imaging: The unique optical properties of QDs make them appealing as /n vivo and

in vitro fluorophores in a variety of biological investigations, in which traditional

fluorescent labels based on organic molecules fall short of providing long-term stability

and simultaneous detection of multiple signals.

["Quantum dot bioconjugates for imaging, labeling, and sensing”, IL Medintz et al,

Nature materials, 2005 ]

2. Immunohistochemistry: Bioconjugated QDs can be used for multiplexed profiling of

molecular biomarkers, and ultimately for correlation with disease progression and

response to therapy.

["Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry”, Y

Xing et al, Nature Protocols, 2007]

3. Cell targeting: The unique optical properties, such as size-dependent tunable absorption
and emission in the visible and NIR regions, narrow emission and broad absorption bands

high photoluminescence quantum yields, large one- and multi-photon absorption cross-

sections, and exceptional photostability shows excellent cell targeting performance.

["Delivering quantum dots to cells: bioconjugated quantum dots for targeted and

nonspecific extracellular and intracellular imaging”, V Biju et a/, Chem. Soc. Rev., 2010]

4. Stem cell labeling: The use of bioconjugated QDs acts as an effective probe for long-

term labeling of stem cells.

["Labeling of Mesenchymal Stem Cells by Bioconjugated Quantum Dots", BS Shah et al,

Nano letters, 2007]

5. Cell detection: Highly luminescent semiconductor quantum dots covalently coupled to
biomolecules for use in ultrasensitive biological detection. In comparison with organic

dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times

as stable against photobleaching, and one-third as wide in spectral linewidth.

["Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection”, WCW Chan et a/,

Science, 1998]
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