Microsystems Laboratory UC-Berkeley, ME Dept.

1

Introduction to Nanotechnology and Nanoscience – Class#9

Liwei Lin

Professor, Dept. of Mechanical Engineering Co-Director, Berkeley Sensor and Actuator Center The University of California, Berkeley, CA94720 e-mail: lwlin@me.berkeley.edu http://www.me.berkeley.edu/~lwlin

Liwei Lin, University of California at Berkeley

Outline

Microsystems Laboratory UC-Berkeley, ME Dept.

Recap on Class#8 CNT (n,m) CNT Applications Paper #2 final parts Lab #1

Growth Condition

Microsystems Laboratory UC-Berkeley, ME Dept.

Substrate -Silicon dioxide (why not silicon?) -Other oxides -Metal Catalyst Particle -Determine the diameter of CNT -Evaporation -Solution Gas

Temperature

Dai, H. et al. Acc. Chem. Res. 35, 1035 Liwei Lin, University of California at Berkeley

Microsystems Laboratory UC-Berkeley, ME Dept.

Resonator Frequency

Resonator Frequency: spring-mass

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Clamped-Clamped beam

$$k = \frac{192EI}{L^3}$$

Microsystems Laboratory UC-Berkeley, ME Dept.

Physical Structure of SWNTs

a_1 and a_2 are the unit cell base vectors

Microsystems Laboratory UC-Berkeley, ME Dept. CNT – Root and Tip Growth Higher pressure Secondary Structure: Heat transfer Gas atom (Room Temp.) CNT (root-growth) Direction Growth Secondary 400 nm Structure

Liwei Lin, University of California at Berkeiey

CNT Field Emission Display

Carbon nanotube field emission display Samsung Research (Korea)

W.B. Choi et al., *Appl. Phys. Lett.* **75**, 3129 (1999).

Field Emission - Carbon Nanotube

V. Filip, D. Nicolaescu, and F. Okuyama, J. Vac. Sci. Technol. B 19, 1016 (2001)

Liwei Lin, University of California at Berkeley

Microsystems Laboratory

(From R. Smalley's web image gallery)

Liwei Lin, University of California at Berkeley

Why Carbon nanotubes?

Technological applications

- conductive and high-strength composites
- energy storage and conversion devices
- sensors, field emission displays
- nanometer-sized molecular electronic devices

Basic research: most phenomena of mesoscopic physics observed in CNTs

- ballistic, diffusive and localized regimes in transport
- disorder-related effects in MWCNTs
- strong interaction effects in SWCNTs
- Coulomb blockade and Kondo physics
- spin transport
- <u>superconductivity</u>

Band Structure of Graphene

Tight-binding model on hexagonal lattice Valence and conduction bands touch at E=0

Liwei Lin, University of California at Berkeley

Microsystems Laboratory

Electronic Structure of SWNTs

Periodic boundary conditions \rightarrow

- nanotube metallic if Fermi points allowed wave vectors, otherwise semiconducting !
- necessary condition: (2n+m)/3 = integer

Liwei Lin, University of California at Berkeley

Band structure predicts three types:

• semiconductor if (2n+m)/3 not integer; band gap:

$$\Delta E = \frac{2\hbar v_F}{3R} \approx 1 \text{ eV}$$

- metal if *n*=*m* (armchair nanotubes)
- small-gap semiconductor otherwise (curvatureinduced gap)

Experimentally observed: STM map plus conductance measurement on same SWNT

Microsystems Laboratory UC-Berkeley, ME Dept.

Examples

Microsystems Laboratory UC-Berkeley, ME Dept.

Synthesis of Nanotubes

Carbon arc-discharge

Laser ablation

Chemical vapor deposition

Typical sizes

- 0.4 ~ 3 nm for SWNT (Single-wall nanotube)
- 1.4~100 nm for MWNT (Multi-wall nanotube)
- Cost of making, \$750/g for high purity, \$60/g for many impurities!

COLLEGE ST.

Microsystems Laboratory UC-Berkeley, ME Dept.

Carbon-arc Discharge

Using high voltages to attract carbon powders Yield up to 30% Highly depends on environment

Image from http://mrsec.wisc.edu/Edetc/SlideSho w/images/nanotubes/arc.jpg

Microsystems Laboratory UC-Berkeley, ME Dept.

Laser Ablation

- Pulsing laser and an inert gas in sealed reactor with high temperatures
- □ Pulsed laser vaporizes graphite
- The graphite vapor condenses forming tubes
- □ Yield up to 70% by weight
- □ Very expensive
- □ Produces SWNT
- □ Image from <u>http://ipn2.epfl.ch/CHBU/images/laserva</u> <u>p.gif</u>

Chemical Vapor Deposition

 Substrate made of iron, cobalt, nickel or a combination heated to 700°C

Microsystems Laboratory

- $\Box H_2, N_2 \text{ or } NH_3 \text{ with } CH_4,$ $C_2H_5OH, C_2H_2 \text{ reactor}$ chamber
- □ Grows at sites where gases meet with substrate
- □ Process occurs fast
- Potential way of
 commercially producing
 nanotubes

Atomic Force Microscopy Atomic Force Microscopy

•The atomic force microscopy (AFM) was invented by Binnig and Quate in 1986

Microsystems Laboratory UC-Berkeley, ME Dept.

Schematic of AFM

Liwei Lin, University of California at Berkeley

Microsystems Laboratory UC-Berkeley, ME Dept.

Cantilevers for the AFM


```
.. ... .. ... . ...
```


Silicon Nitride Tip

Silicon Nitride Cantilevers

Microsystems Laboratory UC-Berkeley, ME Dept.

How does your tip profile affect your AFM scan?

http://www.photronics.com/templates/techpapers/bacus_manuscript/bacus_manuscript4.pdf

Liwei Lin, University of California at Berkeley

Laser-Induced Graphene Formation

Fig. 3(a) Atomic percentages of carbon, oxygen and nitrogen as a function of laser power. These values are obtained from highresolution XPS. The threshold power is 2.4W, at which conversion from PI to LIG occurs

- The energy from the laser leads to extremely high localized temperatures (> 2500 °C).
- This high temperature breaks specific bonds (C O, C = O and N – C bonds) and causes subsequent release of gases.
- Aromatic compounds rearrange to form graphitic structures, with an overlayer of evolved gases minimizing oxidation.
- The mechanism of laser graphitization is linked to structural features in polymer repeat units, especially aromatic and imide units. Only 2 out of 15 tested polymers can form LIG. They both contain aromatic and imide repeat units.

In-Plane Interdigitated LIG Microsupercapacitors (LIG-MSCs)

Fig. 4(a) A digital photograph of LIG-MSCs with 12 interdigital electrodes; scale bar, 1 mm.

Fig. 4(b) SEM image of LIG electrodes; scale bar, 200 mm.

Fig. 4(c) Schematic diagram of LIG-MSCs device architecture.

- LIG serves as both the active electrodes and the current collectors.
- Well-defined LIG-MSC electrodes are directly written on PI sheets with a neighbouring distance of 300 µm
- Silver paint was applied on common positive and negative electrodes.
- Kapton tape was employed to define the active electrodes.

Electrochemical Performance

4(d & e) CV curves of LIG-MSCs at scan rates from 20 to 10000 mVs

4(f) Specific areal capacitance (C_{A}) calculated from CV curves as a function of scan rates

- Cyclic voltammetry (CV) and galvanostatic charge

 discharge (CC) measurements were performed to
 investigate the electrochemical performance of the
 fabricated LIG-MSCs
- Good double-layer capacitive behaviours are shown from the CV curves.
- LIG-MSCs constructed with LIG-4.8 W electrodes exhibit the highest specific areal capacitance.
- All other electrochemical measurements were carried out on LIG-MSCs made from PI with a laser power of 4.8 W.

Electrochemical Performance

Fig. 4(g & h) CC curves of LIG-MSCs at discharge current densities (I_D) varied from 0.2 to 25 mA cm^-2.

Fig. (I), C_A calculated from CC curves versus I_D

- After comparing capacitance with GO-derived supercapacitors and carbon-based MSCs, LIG-MSCs show excellent capacitive behaviour.
- A low equivalent series resistance of 7 Ω suggests good conductivity and rapid charge-discharge capabilities.

Electrochemical Performance

Fig. (j and k), Charge density distribution of the states within a voltage window (-0.1, 0.1) V for type I and II polycrystalline sheets. The defects at the grain boundaries are shadowed, and numbers show the misorientation angle between the grains.

Fig. (I) A carbon layer fully composed of pentagons and heptagons (pentaheptite).

Fig. (n) Calculated quantum capacitance (defined in the text) of perfect and polycrystalline/disordered graphene layers.

LIG-MSCs offer more energy or power density or both.

- When compared with recently demonstrated reduced GO-film, MSCs (MPG-MSCs), and laserscribed graphene MSCs (LSG-MSCs), LIG-MSCs can deliver comparable E_V, although power performance needs to be enhanced.
- LIG-MSCs exhibit 100 times higher areal energies
 E_A and 4 times power densities P_A than MPG-MSCs.
- LIG-MSCs offer slightly better E_A than LSG-MSCs with comparable power performance.

Methods Experimental Setup

- Utilized Kapton Polyimide film and various polymer sheets from McMaster-Carr
- CO2 laser cutter system (Universal X-660) with 10.6 mm wavelength and 14 ms pulse duration employed for laser scribing.
- Laser power varied from 2.4 to 5.4W with 0.6W increments; fixed scan rate of 3.5 inches/s and 1,000 pulses per inch.

Methods Methodological Parameters

- Laser system options included adjustable scan rates (0.7 to 23.1 inches/s) and p.p.i. settings (10– 1,000 p.p.i.).
- Experimentation revealed pulses per inch (ppi) had minimal impact on changing threshold power.
- All laser experiments conducted under ambient conditions had consistent scan rate (3.5 inches/s) and 1,000 p.p.i. was used for all experiments unless specified otherwise.

Methods Device Fabrication Overview

- CO2 laser used for direct writing of LIG electrodes.
- Laser-Induced Graphene serves as active electrodes and current collectors in microsupercapacitors.
- Silver paint enhances electrical connectivity; Kapton PI tape protects contact pads in the meshed area.

Methods Characterization

• SEM images were taken on a FEI Quanta 400 high resolution field emission instrument.

• The TEM and high-resolution TEM were performed using a 2,100 F field emission gun.

• Aberration-corrected scanning TEM images were taken using an 80 kiloelectron volt Japan Electron Optics Laboratory ARM200F equipped with a spherical aberration corrector.

Methods Measurements

• CV, galvanostatic CC measurements, and electrical impedance testing performed using a CHI 608D workstation.

• All measurements conducted in ambient conditions.

• The experimental focus extended to include aqueous electrolytes.

Materials and equipment for production of LIG from PI by laser scribing

- a) Photographs of commercial Kapton PI sheets with a 30 cm ruler on the left, and the laser cutting system on the right
- b) Photograph of an owl patterned on a PI substrates;
- c) Photograph a letter R patterned on a PI substrate;

Transmission Electron Microscopy (TEM) Characteristics of LIG-3.6 w Flakes

- a) TEM image of a thin LIG flake atop a carbon grid; scale bar 200 nm
- b) TEM image of a thick LIG flake showing entangled tree-like ripples; scale bar 100 nm
- c) TEM image of LIG in bright field view; scale bar 10 nm
- d) TEM image of LIG in dark field view; scale bar 10 nm

Characterizations of backsides of LIG films

- a) Scheme of the backsides of LIG films peeled from PI substrates.
- b) SEM images of backsides of LIG films obtained at laser powers of b) 2.4 W; c) 3.6 W; and d) 4.8 W; Scale bars are 10 nm

Supplementary Tables

Summary of polymers, their chemical repeat units and their LIG forming capability. Out of 15 polymers, only PI and PEI were successfully converted to LIG.

Materials	Carbon (%)	Oxygen (%)	Nitrogen (%)
Polyimide	70.5	22.5	7.0
LIG-1.2 W	72.2	20.3	7.5
LIG-1.8 W	74.7	18.2	7.1
LIG-2.4 W	97.3	2.5	0.2
LIG-3.0 W	95.5	4.1	0.4
LIG-3.6 W	94.5	4.9	0.6
LIG-4.2 W	94.0	5.5	0.5
LIG-4.8 W	92.3	6.9	0.8
LIG-5.4 W	91.3	7.7	1.0

Full Name	Symbols	Unit	Graphitized?
Kapton Polyimide	PI	tax or of	Yes
Ulse Polyetherimide	PEI	provorate	Yes
Polyether ether ketone	PEEK	, o'a ot	No
Polyethylene terephthalate	PET		No
Polyethylene naphthalate	PEN	"yanh	No
Fluorinated ethylene propylene	FEP		No
Perfluoroalkoxy alkanes	PFA		No
Teflon	PTFE		No
Polystyrene	PS	2	No
Polycarbonate	PC		No
Polyethylene	PE	↓ ↓ n	No
Polyvinyl alcohol	PVA	OH to	No
Poly(methyl methacrylate)	PMMA	°∽, ,	No
Acrylonitrile butadiene styrene	ABS	12 - 12	No
Poly(acrylonitrile)	PAN	t yt₁ ₩	No

Summary of atomic percentage of elements in raw material (PI) and LIG derived from different laser powers.

Fabrication process of LIG microsupercapacitor

It took ~15 min to fabricate these devices with ~7 cm × ~6 cm area. This movie shows that this technology in fabricating in-plane supercapacitors can be easily scaled.

References

- Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E. L. G., Yacamán, M. J., Yakobson, B. I., & Tour, J. M. (2014). Laser-induced porous graphene films from commercial polymers. *Nature Communications*, 5(1). <u>https://doi.org/10.1038/ncomms6714</u>
- 2. Ma, J., Alfe, D., Michaelides, A. & Wang, E. Stone-Wales defects in graphene and other planar sp(2)-bonded materials. Phys. Rev. B 80 (2009).
- 3. El-Kady, M. F. & Kaner, R. B. Scalable fabrication of high-power graphene micro supercapacitors for flexible and onchip energy storage. Nat. Commun. 4, 1475 (2013).
- 4. Wu, Z. S., Parvez, K., Feng, X. L. & Mullen, K. Graphene-based in-plane micro supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013).

Lab #1

Lab 1 (Direct-write Laser Conversion of Graphene)

Please read through paper #2 carefully as lab #1 is based on the same process. TA will prepare the polymer samples and provide some guidelines for the operation of the laser setup.

- (1) Go to 1113 Etcheverry at the time you are assigned and take a photo of the specimen you are assigned before the synthesis process. You should ask TA or reader on the specific dimensions, thickness ... of the specimen
- (2) Under the guidance of TA or Reader, please place the sample into the laser setup and set the right parameters similar to paper #2 with a target synthesize graphene as suggested by TA or Reader.
- (3) After the synthesis process, please move the sample out of the setup. Please take a photo for the sample after the synthesis process
- (4) Measure the IV response of graphene
- (5) Estimate the resistance of the graphene and if possible, suggest ways to measure the contact resistances.
- (6) write a short (1 page) report about this lab, including IV response of graphene.
- (7) EXTRA POINTS: If you are interested in this lab, you can design and program your own patterns for specific purpose/application

Liwei Lin, University of California at Berkeley

Electrothermal Carbon Nanotube Gas Sensor

Takeshi Kawano, Heather C. Chiamori, Marcel Suter, Qin Zhou, Brian D. Sosnowchik, and Liwei Lin

Nano Lett. 2007, 7, 12, 3686-3690

Publication Date:November 15, 2007

Introduction

- Investigate the electrothermal effect of a single multi walled carbon nanotube (MWCNT)
- Limiting factors include low adsorption energies, diffusion kinetics, response speed, selectivity, and reversibility
- **MWCNT is grown** on silicon using a local synthesis method and accomplished in less than a minute

Operation

- **MWCNT is suspended** between two silicon microstructures and is heated by electrical current
- Each successful connection between a CNT and the connecting microstructures is shown by a voltage spike in figure 1b and 1c
- The MWCNT experiences temperature and resistance changes based on the heattransfer with surrounding gas
- All data is from MWCNT shown in figure 1d

