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Chlna s $150 Billion Chip Push
Has Hit a Dutch Snag

Europe’s largest tech company supplies the machines that can make
next-generation semiconductors. But it’s isn’t selling these to China.

This is where ASML comes in. It’s the sole manufacturer of

extreme ultraviolet lithography equipment — machines that

cost $150 million apiece and can etch microscopic circuit

patterns onto semiconductors that are twice as small as the
previous generation of technology. That lets customers such
as Taiwan Semiconductor Manufacturing Corp. and
Samsung Electronics Co. produce ever smaller and more
energy-efficient chips.
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Extreme Ultraviolet e
Lithography machines




#7°7% REUTERS

U.S. bans sales of top

Nvwvidia Al chips to
China

Wed, August 31, 2022 at 11:50 PM

STORY: U.S. officials have ordered Nvidia to stop
exporting two top computing chips used in

artificial intelligence to China.

The order affects its A100 and H100 chips, designed to speed
up_machine learning tasks... “will address the risk that the

covered products may be used in, or diverted to, a 'military
end use’ or 'military end user’ in China.”
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Both the iIPhone 15 Pro and iPhone 15 Pro

The iPhone 15 Pro is built using a new titanium enclosure.

(Apple)

Max also get Apple's new 3-nanometer A17
Pro chips. The chip, which Apple says Is the
fastest In any smartEhone, features 19
billion transistors and features 6 CPU cores
broken down into two performance cores
and four efficiency cores. There's a 16-core
neural engine that Apple says iIs 2x faster

than before.
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HW#1 — Problem 4
Problem 4 (MOSFET)

The diagram shows a standard MOSEFET. (1) Draw the cross-sectional view diagram in the areas

under the two dash lines. (2) Assunung that that the drawing in scale and the minsmum feature size
13 43nm for the gate length. Calculate how many MOSFET can be placed in an area of 17x17
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Oxidation in NMOS
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CMOS
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Fabrication Methodologies
S

Thin Film
Heterostructures
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Top Down: Photolithography

Ferromagnetic/superconducting
devices (e-beam lithography)

BENZINE DITHOL moleculs, acting a5
a maleeular condurtar was rested benween

sl for the atility of
500 werk with more con
L.

Molecular electronics
(e-beam lithography)
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Top Down: Nanolmprinting

Mold
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Top Down: Nanosphergucs v
Lithography

1. Clean Substrate 2. Drop Coat

5. Liftoff
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Bottom Up: Carbon e
Nanotube Synthesis
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Bottom Up: Molecular s
Self Assembly

« Spontaneous organization of molecules into stable, structurally
well-defined aggregates (nanometer length scale).

e Molecules can be transported to surfaces through liquids to
form self-assembled monolayers (SAMs).

Supramolecular rodcoil Polythiophene wires Supramolecular rodcoil
“mushrooms” nanoribbons
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“Prediction is very difficult,

Especially of the future ”

attributed to Niels Bohr
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A quote to remember:

“The Federal Patent Office should be closed,
because everything that can be invented
has been invented.”

Charles Duell
Commissioner

Federal Office of Patents
1929

Liwei Lin, University of California at Berkeley 17
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The PN Junction Diode

When a P-type semiconductor region and an N-type
semiconductor region are in contact, a PN junction
diode 1s formed.
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Diode Operating Regions

In order to understand the operation of a diode, 1t 1s
necessary to study its behavior in three operation
regions: equilibrium, reverse bias, and forward bias.

VD - 0 VD < 0 VD > O
PN Junction PN Junction PN Junction
in Equilibrium Under Reverse Bias Under Forward Bias

® Depletion Region E:>' ® Junction Capacitance E:> ¢ |/V Characteristics
¢ Built=in Potential
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the Junction

Because of the difference in hole and electron
concentrations on each side of the junction, carriers
diffuse across the junction:

n p
n : ;
" o Pp
: : n
pn i :gj
—I :
1 : F
X1 X2 X

Notation:

n, = electron concentration on N-type side (cm™3)
p, = hole concentration on N-type side (cm™)

p, = hole concentration on P-type side (cm™)

n, = electron concentration on P-type side (cm=)
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Depletion Region

As conduction electrons and holes diffuse across the

junction, they leave behind 1onized dopants. Thus, a
region that 1s depleted of mobile carriers 1s formed.
« The charge density in the depletion region 1s not zero.

» The carriers which diffuse across the junction recombine
with majority carriers, i.e. they are annihilated.
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Carrier Drift acros s UC-Berkeley, ME Dept.
the Junction

Because charge density # 0 1n the depletion region, an
electric field exists, hence there 1s drift current.
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PN Junction Capacitance

A reverse-biased PN junction can be viewed as a
capacitor. The depletion width () and hence the
junction capacitance (C;) varies with Vy.
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PN Junction under o
Reverse Bias

A reverse bias increases the potential drop across the
junction. As a result, the magnitude of the electric field
increases and the width of the depletion region widens.
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3 Minority Carrier Injection o
under Forward Bias

The potential barrier to carrier diffusion is decreased by a
forward bias; thus, carriers diffuse across the junction.

» The carriers which diffuse across the junction become minority
carriers in the quasi-neutral regions; they recombine with
majority carriers, “dying out” with distance.
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I-V Characteristic oo
of a PN Junction

Current increases exponentially with applied forward
bias voltage, and “‘saturates” at a relatively small
negative current level for reverse bias voltages.

Rerizrsse Fﬂéggrd “Ideal diode” equation:
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Reverse Breakdown

As the reverse bias voltage increases, the electric field
in the depletion region increases. Eventually, 1t can
become large enough to cause the junction to break
down so that a large reverse current flows:

A

Ip

breakdown voltage — VBD

Breakdown
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The MOSFET

Metal-Oxide-Semiconductor GATE LENGTH, L
Field-Effect Transistor: I

OXIDE THICKNESS, T

¥ Tox

Source

Substrate
JUNCTION DEPTH, XJ

M. Bohr, Intel Developer
Forum, September 2004

Current flowing through the channel between the

source and drain 1s controlled by the gate voltage.
= A
= “N-channel” & “P-channel” MOSFETs 5| Vi
operate in a complementary manner = |
“CMOS” = Complementary MOS |GATE VOLTAGE|
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“/N-Channel MOSFET Structure

Conductive
Gate Plate ; Circuit symbol

G

L

Ec Tr ':'D

Source

p=substrate

Insulator

[0 The conventional gate material 1s heavily doped polycrystalline
silicon (referred to as “polysilicon” or “poly-S1” or “poly™)

» Note that the gate is usually doped the same type as the source/drain, i.e.
the gate and the substrate are of opposite types.

[1 The conventional gate insulator material 1s S10,.

1 To minimize current flow between the substrate (or “body’’) and
the source/drain regions, the p-type substrate 1s grounded.
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(Qualitative)

[J As the gate voltage (V) 1s increased, holes
are repelled away from the substrate surface.

» The surface is depleted of mobile carriers. The
charge density within the depletion region is
determined by the dopant ion density.

p-substrate

Deﬁletinn
Region

[ As V; increases above the threshold voltage OF— Vg2 Vi
Vi, @ layer of conduction electrons forms at '
the substrate surface.

» For V5> Vi, n> N, at the surface.
=> The surface region is “inverted” to be n-type.

Conduction Electrons

p-substrate

The electron inversion layer serves as a resistive path (channel) for current to
flow between the heavily doped (i.e. highly conductive) source and drain regions.

Liwei Lin, University of California at Berkeley 30
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Voltage-Dependent Resistor

1 In the ON state, the MOSFET channel can be viewed as a

resistor. G

L

e e

S o—MW—W—W——Wi—o D

[1 Since the mobile charge density within the channel depends on
the gate voltage, the channel resistance 1s voltage-dependent.

-
/
= . ‘ / . D
a— = Vo ? L Vs
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F = B, # ’f‘ I|IIl-
ln—J l"—J = Lt V:;1

p=substrate
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Channel Length & e e
Width Dependence

[1 Shorter channel length and wider channel width each yield
lower channel resistance, hence larger drain current.

 Increasing W also increases the gate capacitance, however, which limits
circuit operating speed (frequency).

Short \"J’ +

Lung _:ﬁr
> -
VD L.l"n

Liwei Lin, University of California at Berkeley 32



4 Charge in an N-Channel s
Ve < Vs MOSFET

depletion region
S D

=] e (no inversion layer
w 1 N | E

~ at surface)
e X

Depletion region

Inversion layer

o — = =y
—— v — —y
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What Happens at Larger i
> V.2

VDS - VGS_VT . |nVersi0n-|ayer
'{ is “pinched-off”
at the drain end

Vs> Vies—V7

As Vs increases above Vo~V =V,yo4m
the length of the “pinch-off” region AL increases:

- “extra” voltage (Vs — Vp..,) is dropped across the distance AL
- the voltage dropped across the inversion-layer “resistor” remains V,
— the drain current I, saturates

Note: Electrons are swept into the drain by the E-field when they enter the pinch-off region.

Liwei Lin, University of California at Berkeley 34
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Summary of I, vs. Vg

I As Vs increases, the inversion-layer charge density at
the drain end of the channel is reduced; therefore, I,
does not increase linearly with V.

* When Vs reaches Vg — V7, the channel is “pinched off”
at the drain end, and /, saturates (i.e. it does not
increase with further increases in V).

/////////////

i

Z VGS B VT )2

TD L psar = 1,C,,

pinch-off region
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Evolution of the Transistor

!
F 194]
1048
1967
-. .I:.-
‘ |
] 1 :

1957 1 _

1 The 1967 microchip contained two transistors and the 1997
microchip contained 5 million transistors!

1 What technologies were used to put so many transistors?
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Integrated Circuits

 Integrated Circuits (IC) were “invented” in
1958 by Jack Kilby at Texas Instruments &
later Robert Noyce at Fairchild Semi.

Texas Instruments First IC
http://www.pbs.org/transistor/background1/events/icinv.html

« ldea was to build a transistor entirely on a
silicon substrate in “one shot”

Liwei Lin, University of California at Berkeley 37
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Czochalski Process

http://cnx.org/content/m1033/latest/
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\wv/Technologies Involved in IC
Looking at Just Silicon Technology

« Start with near-perfect single crystals of Si

Tm

« After boule is sliced, top-down lithography is performed

Liwei Lin, University of California at Berkeley 39
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Top-Down: L
\Photolithography

Step 1: Spin photoresist (a UV-

[T Besist

B 02 sensitive polymer) and bake to
— x cross link polymer
N 53— Mk Step 2: UV expose to a
— mask—UV light will break cross-
Positie &rit Nogltiv st linked bonds
/-’ - S
TN | ﬁ . Step 3: Develop with developer

5i |

l R
i Step 4: Can then wet or dry
\ %ﬁ\i % etch

§i |

http://www.ece.gatech.edu/research/labs/vc/theory/photolith.html
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Top-Down Fabrication

Design —> Layout——>Fabrication —>Testing

IC IC IC IC
MEMS MEMS MEMS MEMS
Scale

e lum =10%m, Human hair ~ 100um, Red blood cell ~ 5um
 State-of-art microelectronics — 45nm (Intel Processors)
Clean room?

1 About 2 billion dollars to build a 12-inch fab

e Class 1 maximum number of 0.5um particles/ft3
e Class 10 Typical IC fab
e Class 100 Berkeley Microlab

(]
e (Class 1,000,000 Regular room
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|C Process

General fabrication flow

« Wafer clean

>+ Thin film deposition (SiO2, SisN4, metal ...) (1)
+ Lithography (mask#1, #2, ...) (2)

. Photoresist
* Etching @ e
/ SIOZ 2 V. 77/

@ Si1 substrate

©,
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