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Outline

Top-down Technologies
Semiconductor & Silicon
PN junction
IC Fabrication

(some materials from Professors Lydia 
Sohn & Tsu-Jae King Liu)
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Extreme Ultraviolet 
Lithography machines
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The order affects its A100 and H100 chips, designed to speed 
up machine learning tasks… "will address the risk that the 
covered products may be used in, or diverted to, a 'military 
end use' or 'military end user' in China."
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I-Phone 15
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HW#1 – Problem 4



Microsystems Laboratory
UC-Berkeley, ME Dept.

8Liwei Lin, University of California at Berkeley

Oxidation in NMOS



Microsystems Laboratory
UC-Berkeley, ME Dept.

9Liwei Lin, University of California at Berkeley

CMOS
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Fabrication Methodologies

 Microelectronics (CMOS)

 Nanostructures (dots, wires, tubes, 
gap …)
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Top Down:  Photolithography
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Top Down:  NanoImprinting
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Top Down:  Nanosphere 
Lithography
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Bottom Up:  Carbon 
Nanotube Synthesis  
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Bottom Up:  Molecular 
Self Assembly
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“Prediction is very difficult,

Especially of the future  ”

 

  attributed to Niels Bohr
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“The Federal Patent Office should be closed,
  because everything that can be invented
  has been invented.”

Charles Duell
Commissioner
Federal Office of Patents
1929

A quote to remember:
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The PN Junction Diode
 When a P-type semiconductor region and an N-type 

semiconductor region are in contact, a PN junction 
diode is formed. VD

ID

+–
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Diode Operating Regions 
 In order to understand the operation of a diode, it is 

necessary to study its behavior in three operation 
regions:  equilibrium, reverse bias, and forward bias.

VD = 0 VD > 0VD < 0
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Carrier Diffusion across 
the Junction

 Because of the difference in hole and electron 
concentrations on each side of the junction, carriers 
diffuse across the junction:

Notation:
nn ≡ electron concentration on N-type side (cm-3)
pn ≡ hole concentration on N-type side (cm-3)
pp ≡ hole concentration on P-type side (cm-3)
np ≡ electron concentration on P-type side (cm-3)
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Depletion Region
 As conduction electrons and holes diffuse across the 

junction, they leave behind ionized dopants.  Thus, a 
region that is depleted of mobile carriers is formed.
• The charge density in the depletion region is not zero.
• The carriers which diffuse across the junction recombine 

with majority carriers, i.e. they are annihilated.

width=Wdep

quasi-
neutral 
region

quasi-
neutral 
region



Microsystems Laboratory
UC-Berkeley, ME Dept.

22Liwei Lin, University of California at Berkeley

Carrier Drift across 
the Junction

 Because charge density ≠ 0 in the depletion region, an 
electric field exists, hence there is drift current. 
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PN Junction Capacitance
 A reverse-biased PN junction can be viewed as a 

capacitor.  The depletion width (Wdep) and hence the 
junction capacitance (Cj) varies with VR.  

  
dep

si
j W

C ε
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PN Junction under 
Reverse Bias 

 A reverse bias increases the potential drop across the 
junction.  As a result, the magnitude of the electric field 
increases and the width of the depletion region widens.
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Minority Carrier Injection 
under Forward Bias

 The potential barrier to carrier diffusion is decreased by a 
forward bias; thus, carriers diffuse across the junction.
• The carriers which diffuse across the junction become minority 

carriers in the quasi-neutral regions; they recombine with 
majority carriers, “dying out” with distance.

np(x)
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I-V Characteristic 
of a PN Junction

 Current increases exponentially with applied forward 
bias voltage, and “saturates” at a relatively small 
negative current level for reverse bias voltages.
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“Ideal diode” equation: 
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Reverse Breakdown
 As the reverse bias voltage increases, the electric field 

in the depletion region increases.  Eventually, it can 
become large enough to cause the junction to break 
down so that a large reverse current flows:

breakdown voltage
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The MOSFET

 Current flowing through the channel between the 
source and drain is controlled by the gate voltage.

Substrate

Gate

Source Drain

Metal-Oxide-Semiconductor 
Field-Effect Transistor:

GATE LENGTH, Lg
OXIDE THICKNESS, Tox

JUNCTION DEPTH, Xj
M. Bohr, Intel Developer
Forum, September 2004

 “N-channel” & “P-channel” MOSFETs 
operate in a complementary manner
“CMOS” = Complementary MOS |GATE VOLTAGE|

CU
RR

EN
T

VTH
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 The conventional gate material is heavily doped polycrystalline 
silicon (referred to as “polysilicon” or “poly-Si” or “poly”)
• Note that the gate is usually doped the same type as the source/drain, i.e.

the gate and the substrate are of opposite types.
 The conventional gate insulator material is SiO2.
 To minimize current flow between the substrate (or “body”) and 

the source/drain regions, the p-type substrate is grounded.

N-Channel MOSFET Structure
Circuit symbol
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 As the gate voltage (VG) is increased, holes 
are repelled away from the substrate surface. 
• The surface is depleted of mobile carriers.  The 

charge density within the depletion region is 
determined by the dopant ion density.

 As VG increases above the threshold voltage 
VTH, a layer of conduction electrons forms at 
the substrate surface.
• For VG > VTH, n > NA at the surface.
 The surface region is “inverted” to be n-type.

Channel Formation 
(Qualitative)

The electron inversion layer serves as a resistive path (channel) for current to 
flow between the heavily doped (i.e. highly conductive) source and drain regions.

VG < VTH

VG ≥ VTH
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Voltage-Dependent Resistor
 In the ON state, the MOSFET channel can be viewed as a 

resistor.  

 Since the mobile charge density within the channel depends on 
the gate voltage, the channel resistance is voltage-dependent.
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 Shorter channel length and wider channel width each yield 
lower channel resistance, hence larger drain current.
• Increasing W also increases the gate capacitance, however, which limits 

circuit operating speed (frequency).

Channel Length & 
Width Dependence
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VGS > VT :

depletion regionVGS < VT:
(no inversion layer
at surface)

Charge in an N-Channel 
MOSFET

VDS ≈ 0

VDS > 0
(small)
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VDS = VGS–VT Inversion-layer
is “pinched-off”
at the drain end

As VDS increases above VGS–VT ≡ VDSAT, 
the length of the “pinch-off” region ∆L increases:
• “extra” voltage (VDS – VDsat) is dropped across the distance ∆L
• the voltage dropped across the inversion-layer “resistor” remains VDsat

⇒ the drain current ID saturates

What Happens at Larger 
VDS?VGS > VT :

VDS > VGS–VT

Note: Electrons are swept into the drain by the E-field when they enter the pinch-off region.
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• As VDS increases, the inversion-layer charge density at 
the drain end of the channel is reduced; therefore, ID 
does not increase linearly with VDS.

• When VDS reaches VGS − VT, the channel is “pinched off” 
at the drain end, and ID saturates (i.e. it does not 
increase with further increases in VDS).

Summary of ID vs. VDS

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT
+-

pinch-off region

+
–

( )2
2 TGSoxnDSAT VV

L
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Evolution of the Transistor

 The 1967 microchip contained two transistors and the 1997 
microchip contained 5 million transistors!

 What technologies were used to put so many transistors?  
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Integrated Circuits
• Integrated Circuits (IC) were “invented” in 

1958 by Jack Kilby at Texas Instruments & 
later Robert Noyce at Fairchild Semi. 

Texas Instruments First IC
http://www.pbs.org/transistor/background1/events/icinv.html

• Idea was to build a transistor entirely on a 
silicon substrate in “one shot”
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Czochalski Process
http://cnx.org/content/m1033/latest/
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Technologies Involved in IC
Looking at Just Silicon Technology

• Start with near-perfect single crystals of Si

• After boule is sliced, top-down lithography is performed

1 m

30 cm
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Top-Down:  
Photolithography

Step 1:  Spin photoresist (a UV-
sensitive polymer) and bake to 
cross link polymer

Step 2:   UV expose to a 
mask—UV light will break cross-
linked bonds

Step 3:   Develop with developer 

Step 4:   Can then wet or dry 
etch

http://www.ece.gatech.edu/research/labs/vc/theory/photolith.html
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Top-Down Fabrication

 Scale
• 1µm = 10-6 m, Human hair ~ 100µm, Red blood cell ~ 5µm
• State-of-art microelectronics – 45nm (Intel Processors)

 Clean room?
 About 2 billion dollars to build a 12-inch fab

• Class 1 maximum number of 0.5µm particles/ft3

• Class 10 Typical IC fab
• Class 100 Berkeley Microlab

• Class 1,000,000 Regular room

Design Layout Fabrication Testing
IC IC IC IC

MEMS MEMS MEMS MEMS
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IC Process
 General fabrication flow

• Wafer clean
• Thin film deposition (SiO2, Si3N4, metal …)
• Lithography (mask#1, #2, …)
• Etching 

1

Si substrate

SiO2

1

2
Photoresist

2

3

3
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