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Announcements

 A fairly “good” textbook:
• Nanophysics & NanoTechnology, Edward Wolf

Wiley-VCH, 2006 (Amazon.com)
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During the 2001 anthrax attacks, U.S. 
federal agencies contracted with 
Cepheid to track the anthrax.[7][5]

During the COVID-19 pandemic, Cepheid 
began the development of a CRISPR-
based diagnostic test for the SARS-CoV-
2  (then  called  "2019-nCov") virus.

https://en.wikipedia.org/wiki/2001_anthrax_attacks
https://en.wikipedia.org/wiki/2001_anthrax_attacks
https://en.wikipedia.org/wiki/2001_anthrax_attacks
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vs

5 g/cm3

E ≈ kT

Quantum dot
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Rayleigh Light-Scattering
of Nanocrystals

Shape, Size, and Composition Matter
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Optical Absorption
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Effects of Confinement of 
Charge Carriers
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(Paul Alivisatos, UCB)

Example: CdSe quantum dots
Fluoresces vs. wavelength

(After Arum Majumdar, UCB)
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Gold nanoparticles CdSe quantum dots

vs.
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vs
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Electrical Properties:  
Tunneling Current

 At the nanometer scale, electrical insulators begin to 
fail to block current flow

 Quantum mechanical effect known as tunneling
 Tunneling current increases exponentially as the 

thickness of the insulator is decreased
 Tunneling is the basis of the scanning tunneling 

microscope and covalent chemical bonding 
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45 GPa

http://www.owlnet.rice.edu/~biy/Selected%20papers/01TAPhys.pdf
http://cnx.org/contents/f3abd155-e65d-4155-bd2c-9b435b6d2f6a@4/Carbon_Nanomaterials

vs.

520 MPa
8 g/cm3

Pa/(kg/m3)
1 g/cm3

http://cnx.org/contents/f3abd155-e65d-4155-bd2c-9b435b6d2f6a@4/Carbon_Nanomaterials
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Nanotube Composite 
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Size-Dependent Properties

At the nanometer scale, properties become size dependent!

For example,

 •Thermal properties — melting temperature
 •Mechanical properties — adhesion, capillary forces
 •Optical properties — absorption and scattering of light
 •Electrical properties — tunneling current
 •Magnetic properties — superparamagnetic effect

New properties enable new applications
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Invention of the Transistor
The Greatest Motivation

http://www.bellsystemmemorial.com/belllabs_transistor.html

The first transistor was invented in 1947 by Bardeen, Brattain, and Shockley at 
Bell Laboratories.  BBS won the Nobel Prize in 1956
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The Ever-Shrinking Transistor

1947

1958

1961

1st Integrated Circuit (IC)

1st Planar IC

1st Transistor

TI
Jack Kilby
Nobel Prize @2000

Fairchild

Bell Lab - 
Bardeen, Brattain, 
Shockley 

Robert Noyce
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“Moore’s Law”
Not a Law, Just a Roadmap! 

Moore, Electronics 38, 1965
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640K ought to be enough for anybody…
Bill  Gates, 1981
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Where Are We Now?

No exponential is forever…but we delay “Forever.”
G. Moore, 2003
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Nanofabrication
•Top Down:  
“Chisel” away material to make nanoscale  
object

•Bottom Up:  
Assemble nanoscale object using even 
smaller units (atoms and molecules)
Ultimate Goal:  “Dial in” properties that you want 
by designing and building at the scale of nature 
(I.e. the nanoscale)
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What is a Semiconductor?
 Low resistivity => “conductor”
 High resistivity => “insulator”
 Intermediate resistivity => “semiconductor”

• conductivity lies between that of conductors and insulators
• generally crystalline in structure for IC devices

– In recent years, however, non-crystalline semiconductors have 
become commercially very important

polycrystalline amorphous   crystalline
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Semiconductor

Examples:
• Aluminum = 10-6 Ω cm
• SiO2 = 1016 Ω cm

Dopant concentration
• Electron (hole) concentration  n (p)

Conductor Semiconductor Insulator

10-2 105 Resistivity Ω cm



Microsystems Laboratory
UC-Berkeley, ME Dept.

28Liwei Lin, University of California at Berkeley

Semiconductor Materials
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Silicon
 Atomic density: 5 x 1022 atoms/cm3

 Si has four valence electrons.  Therefore, it can form 
covalent bonds with four of its nearest neighbors. 

 When temperature goes up, electrons can become free 
to move about the Si lattice. 

Intrinsic Si
1.45x1010 at room temperature
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Electronic Properties 
of Si

• Silicon is a semiconductor material.
• Pure Si has a relatively high electrical resistivity at room temperature.

• There are 2 types of mobile charge-carriers in Si:
• Conduction electrons are negatively charged;
• Holes are positively charged.

• The concentration (#/cm3) of conduction electrons & holes in a 
semiconductor can be modulated in several ways:

1. by adding special impurity atoms ( dopants )
2. by applying an electric field
3. by changing the temperature
4. by irradiation
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Doping (N type)
 Si can be “doped” with other elements to change its 

electrical properties.
 For example, if Si is doped with phosphorus (P), each 

P atom can contribute a conduction electron, so that 
the Si lattice has more electrons than holes, i.e. it 
becomes “N type”:

Notation:
n = conduction electron 
      concentration



Microsystems Laboratory
UC-Berkeley, ME Dept.

32Liwei Lin, University of California at Berkeley

Doping (P type)
 If Si is doped with Boron (B), each B atom can 

contribute a hole, so that the Si lattice has more holes 
than electrons, i.e. it becomes “P type”:

Notation:
p = hole concentration
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Charge Carriers
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Electron and Hole 
Concentrations

 Under thermal equilibrium conditions, the product 
of the conduction-electron density and the hole 
density is ALWAYS equal to the square of ni:
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Terminology
donor: impurity atom that increases n

acceptor: impurity atom that increases p

N-type material: contains more electrons than holes

P-type material: contains more holes than electrons

majority carrier: the most abundant carrier 

minority carrier: the least abundant carrier 

intrinsic semiconductor:  n = p = ni

extrinsic semiconductor: doped semiconductor
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Facts
 The band gap energy is the energy required to free an 

electron from a covalent bond.
• Eg for Si at 300K = 1.12eV

 In a pure Si crystal, conduction electrons and holes are 
formed in pairs.
• Holes can be considered as positively charged mobile particles 

which exist inside a semiconductor.
• Both holes and electrons can conduct current.

 Substitutional dopants in Si:
• Group-V elements (donors) contribute conduction electrons
• Group-III elements (acceptors) contribute holes
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The MOSFET

 Current flowing through the channel between the 
source and drain is controlled by the gate voltage.

Substrate

Gate

Source Drain

Metal-Oxide-Semiconductor 
Field-Effect Transistor:

GATE LENGTH, Lg
OXIDE THICKNESS, Tox

JUNCTION DEPTH, Xj
M. Bohr, Intel Developer
Forum, September 2004

 “N-channel” & “P-channel” MOSFETs 
operate in a complementary manner
“CMOS” = Complementary MOS |GATE VOLTAGE|

CU
RR

EN
T

VTH
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 The conventional gate material is heavily doped polycrystalline 
silicon (referred to as “polysilicon” or “poly-Si” or “poly”)
• Note that the gate is usually doped the same type as the source/drain, i.e.

the gate and the substrate are of opposite types.
 The conventional gate insulator material is SiO2.
 To minimize current flow between the substrate (or “body”) and 

the source/drain regions, the p-type substrate is grounded.

N-Channel MOSFET Structure
Circuit symbol
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HW#1 – Problem 2&3
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HW#1 – Problem 4
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