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Rest of the Semester

Final Project Presentations – 4/23, 4/25, 4/29, 
4/30

These will be done via zoom – link to be sent by 
bcourse

Final Project Report – 5/4 (Saturday midnight)
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10 mins – roughly 10 ppt slides
Likely to include:

• Title slide
• Stats-of-Art, Other Works
• Concept, Principle -what is your > 5% differences
• Schematic Figure, Design & Fabrication Process
• Analysis (some calculations?) & Discussions
• Numerical Simulations – required for ME218N
• Conclusion 
• References
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Final Project Report
4 Pages, double-column like a research paper
A complete report to tell your story!
Likely to include:

• Title (name, affiliation) & Abstract
• Introduction: Stats-of-Art, Other Works
• Concept, Principle -what is your > 5% differences
• Schematic Figure, Design & Fabrication Process
• Analysis (some calculations?) & Discussions
• Numerical Simulations – required for ME218N
• Conclusion 



CNT-Infused 
Glass Panes

Matthew Amaro



Current Landscape of Smart Windows

● Asahi Glass, based in Japan has developed 
windows with electrochromic materials 
which change transparency by using 
electricity. This allows their glass to either 
block light or let it shine through with the 
flip of a switch.

● Suntuitive Glass, based in Michigan makes 
windows that incorporate thermochromic 
materials that automatically darken as the 
outside temperature rises.

Fig 1) A smart window going from being 
transparent to opaque [1].



Nanotube Innovation in Smart Windows

● Carbon Nanotubes embedded onto the 

graphene lattice of LIG windows can offer at 

least a 5% improvement in energy efficiency.

● Carbon Nanotubes are able to scatter and 

reflect infrared rays.

○ This unique trait of carbon nanotubes enhances 

thermal regulation, leading to less unwanted heat 

gain/loss through windows. Fig 2) Light spectrum with 
corresponding wavelengths in nm [2].



Integrating Nanotubes 
onto Glass Panes



Relationship between Nanotubes and Conductivity

Figure 3) Relationship between CNT 
concentration and conductivity from 
a paper by Sung-Hwan Jang and 
Yong-Lae Park [3].

● At around a CNT 
weight percentage 
of 7% is where you 
see the most 
conductivity before 
it starts to flatten 
out.



Carbon Nanotubes absorption of different wavelengths

Figure 4) CNT Absorption of varying 
wavelengths from a paper by Linqin Jiang, 
Lian Gao, and Jing Sun [4].

● Carbon Nanotubes 
have their peak 
absorption at a 
wavelength of 253 
nm.



Conclusions
● Carbon Nanotubes conductivity 

○ Important to optimize the concentration of Carbon Nanotubes to 

maximize performance and manufacturing repeatability.

● Selective properties
○ Carbon Nanotubes absorb a 253 nm wavelength the most, subsequent 

wave lengths see a reduced absorption rate.

● Endless applications
○ This technology's potential extends beyond smart windows, with 

implications for energy savings and material innovation in many fields.
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• Graphene synthesis by local CVD
• Overview, synthesis methods, local CVD …

• Graphene synthesis by droplet CVD
• Continuous graphene sheet? Application example ...

• Near-Field Electrospinning for Graphene based 
p- and n-type FETs 

• Electrospinning, graphene FETs, characterizations …
• Flexible gas sensors based on graphene FETs

• Flexible substrate, graphene FETs, sensing 
characterizations …

• Graphene-on-Diamond Thin Film UV Detector
• Concept, fabrication, sensor testing results …

Flexible graphene FET gas sensor?
New sensing insights due to graphene?



Fabrication Process

Rigid wafer Flexible  PI 
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Parylene
SourceDrain

Gate

Graphene

Polyimide

Gas Sensing
Ammonia
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0eV Band gap 1.12eV Band gap

Graphene Silicon

Lone pair e-
Sensing Mechanism

𝑅𝑅𝐷𝐷𝐷𝐷 = (𝑛𝑛𝑛𝑛𝜇𝜇)−1
𝐿𝐿
𝑊𝑊

Constant Gate Voltage
17

RDS Changes 



Experimental Results

Sensitivity = 0.00428/ppm (ΔR/R0)

VG = -10V
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Responses Based on Gate Voltage

VG = 10V 
Electrons

VG = -10V
   Holes

e- e-

RDS RDS
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Four Possible Responses

VG = 10V 
Electrons

VG = -10V
Holes

e- e- e- e-

VG = -2V 
Holes

VG = -15V 
Holes

Electrons Electrons Electrons Holes

Dirac Point
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Experimental Results

VG=10V
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Short Summary
1. Demonstration of a flexible graphene FET gas sensor
2. Using polymer of parylene and polyethylenimine (PEI) 
as the gate dielectrics and channel dopant, respectively
3. Demonstration of  four types of responses induced by 
ammonia exposure

Rigid 
CMOS

Flexible 
GFET

Substrate Wafer Polyimide
Dielectrics Oxide Parylene
Dopant B/P PEI
Channel Silicon Graphene
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A Versatile Gas Sensor with Selectivity 
using Single Graphene Transistor
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What’s your favorite smell?
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Skin | Touch sensitive screen
Eye | Camera
Ear | Microphone

Mouth | Loud Speaker

Nose | E-nose?The “information” is ignored.
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3000mAhEnergy

Portable Gas Sensor Desirable Features

Sensitivity

Selectivity
0mAh

8 hours
MOx ~ 1mW

0.1uW

Echem~ 1ppb
Single molecule[1]

[1] Nature Materials 6, 652 - 655 (2007) 
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Principles of Graphene and Gas Sensing

Dirac Point
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Electron transferred 
per molecule

Selectivity!
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Linear Factor As Sensing Scale
Graphene

αe-

βe-

γe-

δe-

Electron transferred 
per molecule

Total carrier change
Linear Factor =

Total impurity change

Unknown for unknown gas

e- e-
e-

Carrier
Charged impurity

Xe-
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10um
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H2O

CH3OH

Increasing Concentration

Linear Factor As Sensing Scale
Graphene

Linear Factor = uL 
pump
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Future Work: Decoupling Interference
Graphene

Linear Factor
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RDS(Ω)

VG(V)

H2O

Future Work: Decoupling Interference

Mixture Complex
Smell
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Smell the importance!

Diagnose lung cancer by the exhaled
breath (70% success rate in late stage)[1]

[1] http://www.medicalnewstoday.com/articles/63857.php

The Future Market of Gas Sensing

Complex
Smell

Monitor air quality wherever you go…
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• Graphene synthesis by local CVD
• Overview, synthesis methods, local CVD …

• Graphene synthesis by droplet CVD
• Continuous graphene sheet? Application example ...

• Near-Field Electrospinning for Graphene based 
p- and n-type FETs 

• Electrospinning, graphene FETs, characterizations …
• Flexible gas sensors based on graphene FETs

• Flexible substrate, graphene FETs, sensing 
characterizations …

• Graphene-on-Diamond Thin Film UV Detector
• Concept, fabrication, sensor testing results …

Carbon sp2+sp3 technology?
Manufacturing technology
New sensing insights?



Transparent Electrode
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Sp2 + Sp3 Carbon Technology

35
Schottky-like heterojunction 
at the interface 



Fabrication Process
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Process Details

37

Diamond Film Peel-and-Break Graphene-on-Diamond
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Large photocurrent 
and signal-to-noise 
ratio are achieved 
in reverse bias 
region  photo-
responsivity 
increases rapidly 
due to (1) 
enlargement of 
absorption depth, 
and (2) enhanced 
carrier states in 
graphene  under 
reversed bias

Experimental Characterizations



Short Summary
1. Demonstration of a graphene-on-diamond UV detector
2. Demonstration of peel-and-break diamond film process
3. Large photo-current and signal-to-noise ratio generated 

by graphene-diamond heterojunction
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Conclusions

40

• Graphene synthesis by local CVD
• Overview, synthesis methods, local CVD …

• Graphene synthesis by droplet CVD
• Continuous graphene sheet? Application example ...

• Near-Field Electrospinning for Graphene based 
p- and n-type FETs 

• Electrospinning, graphene FETs, characterizations …
• Flexible gas sensors based on graphene FETs

• Flexible substrate, graphene FETs, sensing 
characterizations …

• Graphene-on-Diamond Thin Film UV Detector
• Concept, fabrication, sensor testing results …
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