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Outline

Paper 7 continue – Lab#2
Conventional Electrospinning
Nanofibers by Electrospinning (Paper #8)
Small Project Presentations
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Final Project
Don’t copy ideas from others - you can state the 

differences of your idea and other paper(s) even if 
there is only one key difference while all other 
things are the same

concept 10%, presentation 10%, written report 15%
4-page report, double columns like a research paper
Title (name and affiliation), Abstract, Introduction, 

Design (concepts, principles, mechanisms), 
Fabrication, Analysis, Simulations (ME218N 
required), Discussions, Conclusion
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Quiz I Results
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Compared to Other Technologies

● Can measure deformation and 
temperature!

● Similar sensitivity devices are way 
bigger and required more equipment 
[2][3]

● RSSI using AMS SL900A with power 
sensitivities of −6.9 dBmW and −15 
dBmW

● -40 to 150C range of Temperature
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Introduction to Nanofibers

● The smallest polymer fiber contains 
one polymer molecule, typically 
having a diameter of a few tenths of 
a nanometer.

● Oligomers of polyethylene have 
been observed in single-layer 
crystal-like arrays with a diameter of 
around 0.4 nm.



Introduction to Nanofibers: DNA

● The DNA double helix comprises two backbone 
chains with a diameter of approximately 2.5 nm

● Observation of DNA molecules in solution reveals 
fiber-like properties such as extension and transport in 
response to external forces

● Collagen molecules twist around each other to form 
triple helix fibers, which play a crucial role in higher 
levels of organization, such as tendon formation



Introduction to Nanofibers: Commercial Processes

● Expansion of foam until most of the polymer 
converts to fibers, yielding fibers around 100 
nm in diameter.

● Particles of polytetrafluoroethylene from 
dispersion polymerization processes adhere to 
each other, forming small fibers when pulled 
apart.

● Gentle scratching of molded 
polytetrafluoroethylene with coarse sandpaper 
generates many fibers with nanoscale 
diameters on the surface.



Introduction to Electrospinning

● A liquid polymer is held in the solution 
reservoir and flows at a constant rate

● In the emitter, charges accumulate at the 
surface of the liquid.

● The fluid will begin to emit when 
electrostatic repulsion is larger than the 
surface tension.

● When charges leave the liquid, the 
polymer will solidify on the collector.



Introduction to Electrospinning cont.

● Using different collectors allows us to 
create various micro patterns of fibers.

● The diameter of the jet is a function of the 
surface tension, dielectric constant of the 
surroundings, flow rate of the liquid, 
electric current through the jet.



Electrospinning

Base Jet1 2

4 Collector

Spray3

• Electrospun fibers



1 Base

• Tapered Cone

Liquid polymer

• Charge per unit area conserves

JetBase

D

D



• Electrical charges move⇒ jet velocity ↑
• Jet elongates ⇒ jet velocity ↓

3 The Jet

Base

Electrical Charges Accelerate the Jet

Elongation Viscosity

Jet

Solvent evaporates ⇒ viscoelasticity changes 



• 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 from the electrical charges > Jet Cohesive forces
⇒ splay into fibers that repel each other

3&4 Splaying & the Collection Region

• Charge migration to the conducting substrate 

Mechanical Reel

[Keirouz et al., 2023]



Jet Initiation

1. Flat surface 2. Bulge

Surface 
tension

High potential

3. Protrusion 4. Jet

Sir Taylor, 1964

Similar: 
Water/oil interface

High potential High potential



Nanometre diameter fibres of polymer, 
produced by electrospinning
 

Part 3 experimental result and application

Peggy Tsao



Experimental Setup
• polymer had a molecular weight in the 

range of 10 000 – 20 000 g / mol

• polymer was dissolved in an equal 
mixture of dichloromethane and 
trifluoroacetic acid at a concentration 
of around 4%

• The fibers were collected on a metal 
frame about 15 cm and was held 
about 100 cm from the tip

• The current carried by a typical jet was 
around 1 µA.

Example: electrospinning of polyester fibers-
thin fibers of polyethylene terephthalate

100 cm

15 kV

metal frame 



1. The mechanical attachment of the fibers to each 
other at crossing points indicate that the fibers 
were not completely dry when collected.

2. The diameter of fibers are smaller than expected:
• The fibers were cylindrical with a diameters of 

around 300 nm.
• Based on the setup, the expected value is 2 µm.

Reason:
1.  5 successive splays into two fibers
2.  elongation of the fiber by a factor of about 1000.

Example: electrospinning of polyester fibers-
Result discussion

SEM of the fibers



Transmission electron microscopy (TEM)

• The polyethylene terephthalate 
molecules were aligned along the 
axis of the fiber.

Electron diffraction pattern from an 
electrospun polyester fibre



Advantages: 

Small size
large surface area to volume ratio
high porosity 

Application:

Filtration
drug delivery
protective clothing

Electrospun nanofibers properties and application



drug delivery

Electrospun nanofibers properties and application

protective clothing



Enhanced Two-phase Heat Transfer with CNT Heat Sink

• Boiling an effective method of absorbing heat for 
thermal management

• Relevant CNT properties:
• High thermal conductivity
• High surface area
• Wettability (hydrophilic)

• CNT coating has potential to increase heat flux for a 
given substrate temperature

• Promoting bubble nucleation
• Increasing heat transfer area
• Promoting liquid contact with heated surface

Ben Brown, 03/19/2024

HEAT FLUX

COOLANT

Carbon 
Nanotubes

Heated 
Substrate

Patterned 
catalyst

[1] R. Chen, M.-C. Lu, V. Srinivasan, Z. Wang, H. H. Cho, and A. Majumdar, “Nanowires for Enhanced 
Boiling Heat Transfer,” Nano Lett., vol. 9, no. 2, pp. 548–553, Feb. 2009, 
[2] G. Stando, S. Han, B. Kumanek, D. Łukowiec, and D. Janas, “Tuning wettability and electrical 
conductivity of single-walled carbon nanotubes by the modified Hummers method,” Sci Rep, vol. 12, 
no. 1, p. 4358, Mar. 2022.
[3] Van P. Carey, Liquid-Vapor Phase-Change Phenomena : An Introduction to the Thermophysics of 
Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition, vol. Third edition. 
Boca Raton, FL: CRC Press, 2020.

Vapor
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𝑍𝑍𝑍𝑍 =
𝑆𝑆2𝜎𝜎
𝑘𝑘

Τ

Tune electrical conductivity

Tunable VO2 Nanowire Thermoelectric Device

VO2 changes phase at 𝑇𝑇𝑐𝑐  and becomes metallic

Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices, Mohammad Taha et al.
Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams, J. Cao et al.

• Thermoelectric effect suppressed below 𝑇𝑇𝑐𝑐
• 𝑇𝑇𝑐𝑐  changes with applied stress

Main application:
• Autoregulated heat dissipation in electronics (~80C)
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