Empirical fatigue data

R. R. Moore rotating-beam fatigue testing machine

\[F \rightarrow \delta A \rightarrow \delta C \rightarrow N \]

section is in pure bending (no shear force)

\[\text{time } t \quad \text{time } t + \frac{1}{2} \text{ cycle} \]

completely reversed bending stress

\[\text{tensile stress} \]

\[S_u \quad S_e \]

ultimate tensile strength

seamless experiments did not fracture

\[N \]

\[S_e = \text{endurance limit} \]

\[S_e' = \text{unmodified endurance limit} \]

if \(S < S_e' \) \(\rightarrow \) specimen never fracture even as \(N \rightarrow \infty \)

NOTE: both axes are log scale

\[10^6 \quad 10^7 \]

relationship of \(S_e' \) and \(S_u \)

\[S_e' = \frac{1}{2} S_u \quad \text{if } S_u < 212 \text{ kpsi} \]

\[212 \text{ kpsi} \quad \text{if } S_u > 212 \text{ kpsi} \]

(1480 MPa) (1460 MPa)

NOTE:

existence of an endurance limit is specific to

ferrous materials (containing iron)

(e.g., aluminum will fracture at \(S \) at any \(N \) (however low)

- if we run for sufficiently

large \(N \))

3 regions

low cycle \((N < 10^3)\):

use static failure theory

at \(N = 10^3 \), fracture at \(S \approx 0.9 S_u \)

(usually less than \(S_y \))

fatigue life \((N > 10^6)\):

if specimen survive, must be \(S < S_e' \)

\(\rightarrow \) it will survive indefinitely

finite life \((10^3 < N < 10^6)\)

characterize by a power law: \(S_p(N) = AN^b \)

matching condition \(S_p(10^3) = 0.9 S_u \)

\(S_p(10^6) = S_e' \)
Fatigue under non-zero mean stress

\[\text{R.R. Moore} \rightarrow \text{zero mean stress} \rightarrow t \]

\[\text{non zero mean stress} \]

\[\text{Fatigue strength} \rightarrow (S_e) \]

Empirical results:
- If \(S_m < 0 \) (compressive), \(S_f \) is the same as R.R. Moore test.
- If \(S_m > 0 \) (tensile), \(S_f \) is less than R.R. Moore test.

Safe region on plot of \(S_a \) vs. \(S_m \):

\[S_a \text{ always } > 0 \]

\[\text{infinite life} \] (Goodman line)

\[S_f < S_m \]

\[\frac{S_m}{S_e} + \frac{S_m - S_a}{S_u} < 1 \]

\[S_m < 0 \]

\[S_a < S_e \]

- If also want to guard against yielding:
 must have

\[S_a + |S_m| < S_y \]

or

\[\frac{S_a + |S_m|}{S_y} < 1 \] (both \(S_m > 0 \) or \(S_m < 0 \))

\[\text{Region I: immediate failure} \]
\[\text{Region II: finite life} \]
\[\text{Region III: infinite life} \]
- Safe \((S_a, S_m)\) region for a particular life \((N\) cycles\)
 \[
 \rightarrow \text{compute fatigue strength } \quad S_f = aN^b
 \]
 \[
 \rightarrow \text{draw regions defined by}
 \]
 \[
 \begin{cases}
 S_m > 0, & \frac{S_a}{S_f} + \frac{S_m}{S_{ut}} < 1 \\
 S_m < 0, & \frac{S_a}{S_f} < 1
 \end{cases}
 \]

- Some alternative to Goodman line:
 - Soderberg line — uses \(S_y\) instead of \(S_{ut}\)
 \[
 \frac{S_a}{S_e} + \frac{S_m}{S_y} < 1
 \]
 - Gerber parabola — assumes quadratic dependence on \(S_m\)
 \[
 \frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 < 1
 \]