Specification of Preload

force on bolt \(F_b = F_i + \Delta P \)

Stress \(\sigma = \frac{F_b}{A_t} = \frac{F_i + \Delta P}{A_t} \leq \sigma_{ut} \)

- to prevent fracture, require \(F_i \leq \sigma_{ut} \cdot A_t - \Delta P \) (Yielding), \(F_n = -F_i - (1-c)P \leq 0 \)
 Recall: to prevent separation, also want \(F_n \geq (1-c)P \)

\(F_n \) - bolt fracture \(\gamma \) - joint separation

\(\gamma_s \) - proof stress

\(\gamma_p \) - proof load

Standard practice

- if bolt reuse after disassembly:
 - Feat. \(F_i \approx 0.75 \gamma_p A_t \)
 - \(F_i \approx 0.9 \gamma_p A_t \)

Idealized behavior of ductile bolt (exhibits significant plastic deformation before fracture)

if bolt is not stretched into plastic regime (\(F_i = \gamma_p A_t \))

\(\gamma \approx 0.85 \gamma_s \)

\(\Delta \) - there will be greater variability
load factors

for yielding of bolt

\[F_t + \eta_s P < S_p A_t \]

define \(\eta \) by \[F_t + \eta_s P = S_p A_t \]

\(\eta_s \) = \frac{S_p A_t - F_t}{\eta_s P}

for separation of joint

no separation if \(P (1 - \eta) < F_t \)

define \(\eta \) by \[\eta_s P (1 - \eta) = F_t \]

\(\eta_s = \frac{F_t}{P (1 - \eta)} \)

\(\eta \) = \frac{S_p A_t - F_t}{\eta_s P}

limiting stress in bolt

\(\sigma_L \)

tensile stress area

no yielding if \(F_t + \eta_s P < S_p A_t \)

\(\sigma_L \) \text{ yielding line}

\(S_p A_t \) \text{ separation line}

\(F_t \) \text{ \#1}

\(\eta_s \) \text{ \#2}

\(P \)

b bolt yielding \(\eta = \frac{\sigma_L}{\sigma_A} \)

\[\eta_s = \frac{OB}{OA} \]

joint separation \(\eta_s = \frac{OB}{OA} \)

in this particular case, separation before yielding

where comes \(\#1 \)?

\[\rightarrow \text{ preload } F_t \]

\[\rightarrow \text{ loading } P \]

\[\eta_y, \eta_s \]
handout #2 steps to determine K_b

Torque requirement (Sec. 8.8)

wrench torque required to develop the specific preload

1. preload $F_i \uparrow \rightarrow$ better
2. must < F_p, critical

how to determine?

\Rightarrow you may be millionaire if you can
design an easy way

Currently

1. pneumatic - impact wrenching
 (preset the pressure)
 \rightarrow "torque"

2. turn-off nut
 \Rightarrow nut turns = torque

Torque factor

\Rightarrow dimpled + plated

$T = (k_F) F_i \cdot d$

≈ 0.2

$TABLE \ 8-15$

k values for different bolt conditions

if bolt conditions are not specified

$\Rightarrow \ k = 0.2$ in this course

[Preload recommended]

$k_F = 1 \quad 0.75 \quad F_p$ reused connections

$0.9 \quad F_p$ permanent connections

see ex 8.2 yourself

$T = \frac{F_dm}{2} \left[\frac{\tan \alpha + \mu \text{secd}}{1 - \mu \tan \text{secd}} \right] + \frac{F_i}{\mu \text{secd}}$