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Abstract

This paper presents a novel class of resource-constrained multi-agent systems for cooperatively estimating an unknown field of interest
and locating peaks of the field. Each agent is resource constrained and has limited capabilities in terms of sensing, computation, and
communication; hence a centralized approach is not desirable and not feasible. We propose an algorithm for distributedlearning and
cooperative control of a multi-agent system so that a globalgoal of the overall system is achieved from locally acting agents. The proposed
algorithm is executed by each agent independently to estimate an unknown field of interest from noisy measurements and tocoordinate
multiple agents in a distributed manner to discover peaks ofthe unknown field. Each mobile agent maintains its own local estimate of the
field and updates the estimate cooperatively using its own measurements and measurements from nearby agents. Then each agent moves
towards peaks of the field using the gradient of its estimatedfield. Agents are coordinated using a distributed rule so that they avoid
collision while maintaining communication connectivity.The propose algorithm is based on a recursive spatial estimation of an unknown
field of interest using noisy measurements. We show that the closed-loop dynamics of the proposed multi-agent system canbe transformed
into a form of a stochastic approximation algorithm and prove its convergence using the Ljung’s ordinary differential equation (ODE)
approach. Our theoretical results are also verified in simulation.
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1 Introduction

In recent years, significant enhancements have been made
in the areas of sensor networks and mobile sensing agents.
Emerging technologies have been reported on coordination
of mobile sensing agents [1–5]. Mobile sensing agents form
an ad-hoc wireless communication network in which each
agent is resource constrained, i.e., it operates under a short
communication range, limited memory, and limited compu-
tational power. To perform various tasks such as exploration,
surveillance, and environmental monitoring, distributedco-
ordination is required for mobile sensing agents to adapt
to environments to achieve a global goal. Among challeng-
ing problems in distributed coordination of mobile sensing
agents, gradient climbing over an unknown field of interest
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has attracted much attention of environmental scientists and
control engineers [6,7]. This has numerous applications in-
cluding environmental monitoring and toxic-chemical plume
tracing. An interesting practical application is to trace harm-
ful algal blooms in a lake. For certain environmental condi-
tions, rapidly reproducing harmful algal blooms in lakes and
in oceans can produce cyanotoxins [8]. Exposure to water
contaminated with algal cyanotoxins causes serious acute
and chronic health effects to humans and adverse effects
to aquatic life [8,9]. The level of chlorophyll is a measure
closely related to harmful algal blooms. Hence, there have
been efforts to generate the estimated fields of chlorophyll
over the areas of concern (Fig. 1). Having had the aforemen-
tioned motivation, the objective of our work is to develop
theoretically-sound control algorithms for multi-agent sys-
tems to trace peaks of a scalar field of interest (for example,
harmful algal blooms, temperature, pH, salinity, toxins, and
chemical plumes etc.). In general, theses scalar parameters
provide rich information about quality of environments such
as the air, lakes, and public water systems.

The most common approach to this tracing problem has been
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Fig. 1. The estimated field of chlorophyll a generated by the
harmful algal blooms observation system [9] by NOAA. (Photo
courtesy of NOAA).

biologically inspiredchemotaxis[10,11], in which a mobile
sensing agent is driven according to a local gradient of a
field of interest. However, with this approach, the conver-
gence rate can be slow and the mobile robot may get stuck
in the local maxima of the field. The cooperative network
of agents that performs adaptive gradient climbing in a dis-
tributed environment was presented in [6,7]. The centralized
network can adapt its configuration in response to the sensed
environment in order to optimize its gradient climb.

This problem of gradient climbing constantly occurs in bi-
ological species. Aquatic organisms search for favorable re-
gions that contain abundant resources for their survival. For
example, it is well-known that fish schools climb gradients
of nutrients to locate the densest source of food. To locate
resources, fish schools use “taxis”, a behavior in which they
navigate habitats according to local gradients in uncertain
environments. Grünbaum [12] showed that schooling behav-
ior can improve the ability of performing taxis to climb gra-
dients, since the swarming alignment tendency can average
out the stochastic sampling errors of individuals.

Tanner [3] and Olfati-Saber [4] presented comprehensive
analyses of the flocking algorithm by Reynolds [13]. This
flocking algorithm was originally developed to simulate the
movements of flocking birds in computer graphics where
each artificial bird follows a set of rather simple distributed
rules [13]. A bird in a flock coordinates with the movements
of its neighboring flock mates and tries to stay close to its
neighbors while avoiding collisions. In general, the collec-
tive swarm behaviors of birds/fish/ants/bees are known to be
the outcomes of natural optimization [14,15].

In this paper, we extend the recent development in multi-
agent systems [3,4] and develop novel distributed learning
and cooperative control algorithms for multi-agent systems.
The learning and control algorithms are performed at each
agent using only local information. However, they are de-
signed so that agents as a whole exhibitcollective intelli-
gence, i.e., a collection of agents achieves a global goal. In
a resource-constrained multi-agent system, the communica-
tion range of each agent is limited as compared to the size

Fig. 2. Left: Trajectories of the proposed multi-agent system.
Right: Trajectories of field estimating agents without communi-
cation and the swarming effort. The estimated field by agent1 is
shown as a background in colors. Agent1 is plotted as a green dot.
Thin contour lines represent the error field between the truefield
and the estimated field. (+) and (o) represent, respectively, initial
and final locations. Solid lines represent trajectories of agents. See
more details about the simulation in Section 5.

of a surveillance region. Hence, agents cannot perform the
coverage control as shown in [16]. Instead, each agent re-
ceives measurements from its neighboring agents within its
communication range. Upon receiving cooperative measure-
ments, each mobile sensing agent will recursively update the
estimate of an unknown static field of interest. The recursive
estimation is based on the nonparametric method calledker-
nel regressionin order to represent a wide range of physical
phenomena. To locate the maximum (or source) of the field,
the sensing agent will climb the gradient of its own estimated
field. The proposed cooperative control mimics the individ-
ual and social behaviors of a distributed pack of animals
communicating locally to search for their densest resources
in an uncertain environment. The fish school’s efficient per-
formance of climbing nutrient gradients to search food re-
sources and the exceptional geographical mapping capabil-
ity of biological creatures have motivated the development
of our multi-agent systems. Simulation results in Section 5
strongly support our idea and validate the effectiveness of
the proposed multi-agent systems with cooperative control
as compared to field estimating agents without cooperative
control. As shown in Fig. 2, the proposed multi-agent sys-
tem collectively locate the maximum of the unknown field
rapidly while, without communication and the swarming ef-
fort, only a couple of agents near the maximum point can
slowly estimate and climb the gradient of the field.

This paper also presents convergence properties of the
proposed distributed learning and cooperative control al-
gorithms by transforming the closed-loop dynamics of a
multi-agent system into a form of a stochastic approxi-
mation algorithm. Our theoretical results are based on the
ordinary differential equation (ODE) approach [17,18]. We
also present a set of sufficient conditions for which the
convergence is guaranteed with probability one.

This paper is organized as follows. In Section 2, we briefly
introduce the mobile sensing network model, notations re-
lated to a graph, and artificial potentials to form a swarming
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behavior. A recursive radial basis function learning algo-
rithm for mapping the field of interest is presented in Sec-
tion 3.1. In Section 3.2, cooperatively learning control isde-
scribed with a stochastic approximation gain. Section 4 an-
alyzes the convergence properties of the proposed coordina-
tion algorithm based on the ODE approach. In Section 5, the
effectiveness of the proposed multi-agent system is demon-
strated by simulation results with respect to different fields
of interest and conditions.

2 Mobile Sensing Agent Network

In this section, we describe the mathematical framework for
mobile sensing agent networks and explain notations used
in this paper.

Let R, R≥0, R>0, Z, Z≥0, Z>0 denote, respectively, the set
of real, non-negative real, positive real, integer, non-negative
integer, and positive integer numbers. The positive definite-
ness (respectively, semi-definiteness) of a matrixA is de-
noted byA ≻ 0 (respectively,A � 0). In ∈ Rn×n denotes
the identity matrix of sizen.

2.1 Models for Mobile Sensing Agents

Let Ns be the number of sensing agents distributed over
the surveillance regionM ⊂ R2, which is assumed to be
a convex and compact set. The identity of each agent is in-
dexed byI := {1, 2, · · · , Ns}. Let qi(t) ∈ M be the lo-
cation of thei-th sensing agent at timet ∈ R≥0 and let
q := col(q1, q2, · · · , qNs

) ∈ R2Ns be the configuration of
the multi-agent system. The discrete time, high-level dy-
namics of agenti is modeled by

qi(t + ∆t) = qi(t) + ∆tvi(t), (1)

where qi(t) ∈ R2 and vi(t) ∈ R2 are, respectively, the
position and the control input of agenti at time t ∈ R≥0.
∆t ∈ R>0 denotes the iteration step size (or sampling time).
We assume that the measurementy(qi(t)) of thei-th sensor
includes the scalar value of the fieldµ(qi(t)) and sensor
noisew(t), at its positionqi(t) and a sampled timet,

y(qi(t)) := µ(qi(t)) + w(t), (2)

whereµ : M → [0, µmax] is an unknown field of interest.

2.2 Graph-Theoretic Representation

The group behavior of mobile sensing agents and their com-
plicated interactions with neighbors are best treated by a
graph with edges. LetG(q) := (I, E(q)) be an undirected
communication graph such that an edge(i, j) ∈ E(q) if and
only if agenti can communicate with agentj 6= i. We as-
sume that each agent can communicate with its neighboring
agents within a limited transmission range given by a radius

of r, as depicted in Fig. 3. Therefore,(i, j) ∈ E(q) if and
only if ‖qi(t)−qj(t)‖ ≤ r. For example, thei-th agent in Fig.
3 communicates with and collects measurements from all
four neighboring sensing agents in thei-th agent’s commu-
nication range. We define the neighborhood of agenti with
a configuration ofq by N (i, q) := {j ∈ I | (i, j) ∈ E(q)}.
The adjacency matrixA := [aij ] of an undirected graphG
is a symmetric matrix such thataij = k3 ∈ R>0 if vertex
i and vertexj are neighbors andaij = 0 otherwise. Notice
that an adjacency matrixA can be also defined in a smooth
fashion in terms ofq [4]. The scalar graph LaplacianL =
[lij ] ∈ RNs×Ns is a matrix defined asL := DA −A, where
DA is a diagonal matrix whose diagonal entries are row
sums ofA, i.e.,DA := diag(

∑Ns

j=1 aij). The2-dimensional

graph Laplacian is defined aŝL := L ⊗ I2, where⊗ is the
Kronecker product. For instance, the correspondingA, L

andL̂ for a graph in Fig. 3 are:

A = k3















0 1 1 0

1 0 1 0

1 1 0 0

0 0 0 0















, L = k3















2 −1 −1 0

−1 2 −1 0

−1 −1 2 0

0 0 0 0















,

L̂ = L ⊗ I2 = k3















2I2 −I2 −I2 0

−I2 2I2 −I2 0

−I2 −I2 2I2 0

0 0 0 0















,

where0 denotes a zero matrix with appropriate dimensions.
Let a statepi ∈ R2 be associated to agenti for all i ∈ I under
a topology of an undirected graphG. Two agentsi andj are
said to agree whenever they have the same states, i.e.,pi =
pj. The quadratic disagreement functionΨG : R2Ns → R≥0

evaluates the group disagreement in the network of agents:

ΨG(p) :=
1

4

∑

(i,j)∈E(q)

aij‖pj − pi‖2, (3)

wherep := col(p1, p2, · · · , pNs
) ∈ R2Ns . A disagreement

function [4,19] can be obtained via the LaplacianL̂:

ΨG(p) =
1

2
pT L̂p, (4)

and hence the gradient ofΨG(p) with respect top is given
by

∇ΨG(p) = L̂p. (5)
The properties shown in (4) and (5) will be used in the
convergence analysis in Section 4.

2.3 Swarming Behavior

A group of agents are coordinated to collect (noisy) samples
from a stationary field at diverse locations for the purpose
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Fig. 3. The model of the mobile sensing agent network. The agent 2
gathers measurements from two neighboring sensing agents1 and
3 in a r interactive range. Hence, the collective measurements of
agent2 will be sampled at locations denoted by agents1 and3.

of estimating the field of interest. A set of artificial potential
functions creates a swarming behavior of agents and pro-
vides agents with obstacle avoidance capabilities. We use
attractive and repulsive potential functions similar to ones
used in [3,4,20] to generate a swarming behavior. To enforce
a group of agents to satisfy a set of algebraic constraints
‖qi − qj‖ = d for all j ∈ N (i, q), we introduce a smooth
collective potential function

U1(q) :=
∑

i

∑

j∈N (i,q),j 6=i

Uij(‖qi − qj‖2)

=
∑

i

∑

j∈N (i,q),j 6=i

Uij(rij),
(6)

whererij := ‖qi − qj‖2. The pair-wise attractive/repulsive
potential functionUij(·) in (6) is defined by

Uij(rij) :=
1

2

(

log(α + rij) +
α + d2

α + rij

)

, if rij < d2
0,

(7)
otherwise (i.e.,rij ≥ d2

0), it is defined according to the
gradient of the potential, which will be described shortly.
Hereα, d ∈ R>0 andd < d0. The gradient of the potential
with respect toqi for agenti is given by

∇U1(qi) :=
∂U1(q)

∂q̃i

∣

∣

∣

q̃i=qi

=
∑

j 6=i

∂Uij(r)

∂r

∣

∣

∣

r=rij

(qi − qj)

=







∑

j 6=i
(rij−d2)(qi−qj)

(α+rij)2
if rij < d2

0
∑

j 6=i ρ
(√

rij−d0

|d1−d0|

)

‖d2
0−d2‖

(α+d2
0)

2 (qi − qj) if rij ≥ d2
0,

(8)

whereρ : R≥0 → [0, 1] is the bump function [4]

ρ(z) :=















1, z ∈ [0, h);

1
2

[

1 + cos
(

π (z−h)
(1−h)

)]

, z ∈ [h, 1];

0, otherwise.

Notice thatρ varies smoothly from1 to 0 as the scalar
input increases. (6), (7), and (8) will produce a continu-
ously differentiable (C1) reaction potential force between
any two agents as depicted in Fig. 4. Parametersα, d, d0,
andd1 will shape the artificial potential function. A typical
way to choose those parameters are explained as follows.
In equations (6), (7), and (8), a non-zero gain factorα is
introduced to prevent the reaction force from diverging at
rij = ‖qi − qj‖2 = 0. As illustrated in Fig. 4, this potential
yields a reaction force that is attracting when the agents are
too far away and repelling when a pair of two agents are too
close. It has an equilibrium point at a distance ofd. d0 will be
chosen at the location where the slope of the potential force
first becomes zero (Fig. 4) as

√
rij increases from zero. For√

rij > d0, the bump function will shape the the potential
force to become zero smoothly when the relative distance
reaches tod1 which is slightly shorter than the radius of the
transmission ranger. Hence, in general, we configure pa-
rameters such thatd < d0 < d1 < r, which will force the
gradient of the potential function due to agentj in (8) to be
a zero vector before the communication link to agenti is
disconnected from agentj. In this way, we can construct a
smooth collective potential force between any two agents in
spite of the limited communication range. We also introduce
a potentialU2 to model the environment.U2 enforces each
agent to stay inside the closed and connected surveillance
region inM and prevents collisions with obstacles inM.
We constructU2 such that it is radially unbounded inq, i.e.,

U2(q) → ∞ as‖q‖ → ∞. (9)

The condition in (9) can be used for making a Lyapunov
function candidate radially unbounded. Define the total ar-
tificial potential by

U(q) := k1U1(q) + k2U2(q), (10)

where k1, k2 ∈ R>0 are weighting factors. A swarming
behavior and an obstacle avoidance capability of each agent
will be developed in Section 3.2.

3 Distributed Learning and Cooperative Control

In this section, we describe distributed learning and coop-
erative control algorithms. The sensing agent will receive
measurements from its neighboring agents within a limited
transmission range. Upon receiving measurements, each mo-
bile sensing agent will recursively update the estimate of an
unknown static field of interest using the distributed learning
algorithm. Based on the estimated field, each agent moves to
the peak of the field using the cooperative control algorithm.

3.1 Distributed Learning

We introduce a distributed learning algorithm for each mo-
bile sensing agent to estimate a static field of interestµ :
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Fig. 4. The reaction force between two agents is generated bythe
potential function in (6), (7), and (8) with respect to‖qi − qj‖.
Here parametersd = 0.4, d0 = 0.648, d1 = 1.4 andr = 1.6 are
used.

M

Fig. 5. Uniformly distributed Gaussian bases over a surveillance
regionM.

M → [0, µmax]. Suppose that the scalar fieldµ(ν) is gen-
erated by a network of radial basis functions1 :

µ(ν) :=

m
∑

j=1

φj(ν)θj = φT (ν)Θ, (11)

whereφT (ν) andΘ are defined respectively by

φT (ν) :=
[

φ1(ν) φ2(ν) · · · φm(ν)
]

,

Θ :=
[

θ1 θ2 · · · θm

]T

∈ Θ,

whereΘ ⊂ Rm is a compact set. Gaussian radial basis
functions{φj(ν)} are given by

φj(ν) :=
1

Γj

exp

(

−‖ν − κj‖2

σ2
j

)

, (12)

where σj is the width of the Gaussian basis andΓj

is a normalizing constant. Centers of basis functions

1 We have considered a fairly simple parameterization for the
field of interest to focus more on the design and the convergence
analysis of learning agents. See more general models used for the
field of interest in [21,22].

{κj | j ∈ {1, · · · , m}} are uniformly distributed in the
surveillance regionM as shown in Fig. 5.Θ ∈ Θ ⊂ Rm

is the true parameter of the regression model in (11). From
(2), we have observations through sensors at the location
νk, y(νk) = φT (νk)Θ + w(k), wherek is a measurement
sampling index. Based on the observations and regressors
{(y(νk), φ(νk))}n

k=1, our objective is to findΘ̂ which
minimizes the least-squares error:

n
∑

k=1

|y(νk) − φT (νk)Θ̂|2. (13)

Remark 1 Our environmental model in(11)can be viewed
as a nonparametric approach to model spatial phenomena.
Other popular nonparametric approaches are Gaussian pro-
cesses [23] [24] and kriging models [25]. A dynamicalΘ in
(11)was used to represent a time-varying trend in the space-
time Kalman filter model [26] to model spatio-temporal ran-
dom fields.

Noiseless Measurements

Let us first consider the measurement model (2) without
the sensor noisew(k). Similar spatial estimation algorithms
with a known sensor noise level for achieving the minimum
variance of the estimation error can be found in [21,22]. For
a set{(y(νk), φ(νk))}n

k=1, the optimal least-squares estima-
tion solution is well-known [27]:

Θ̂(n) = P (n, 1)ΦT (n, 1)Y (n, 1), (14)

where (for simplicity, we abuse notations by lettingy(k) :=
y(νk) andφ(k) := φ(νk))

Y (n, s) :=
[

y(s) y(s + 1) · · · y(n)
]T

∈ Rn−s+1,

Φ(n, s) :=
[

φ(s) · · · φ(n)
]T

∈ Rn−s+1×m,

P (n, s) := [ΦT (n, s)Φ(n, s)]−1

=

[

n
∑

k=s

φ(k)φT (k)

]−1

∈ Rm×m.

During a time interval between the coordination iteration
indicest and t + ∆t as in (1), we suppose that a sensing
agent has collecteds number of samples from itself and its
neighbors. Assume that at the previous iteration, the agent
has already updated the fieldµ̂(·) based on the previous data
set{(y(k), φ(k))}n−s

k=1 , wheren−s is the total number of past
measurements. Now the sensing agent needs to update the
field µ̂(·) upon receiving cooperatively measureds number
of points{(y(k), φ(k))}n

k=n−s+1.

We then have the following algorithm. Assume that
ΦT (t)Φ(t) is nonsingular for allt. For the collecteds num-
ber of observations and regressors
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{(y(k), φ(k))}n
k=n−s+1, consider the recursive algorithm

given as

K(n) = P (n − s)ΦT
∗
[

Is + Φ∗P (n − s)ΦT
∗
]−1

,

P (n) = [Im − K(n)Φ∗]P (n − s),

Θ̂(n) = Θ̂(n − s) + K(n)
[

Y∗ − Φ∗Θ̂(n − s)
]

,

µ̂(ν) := φT (ν)Θ̂(n),

(15)

where some abbreviations are defined:Y∗ := Y (n, n− s +
1) ∈ Rs, Φ∗ = Φ(n, n − s + 1) ∈ Rs×m, ΦT (n) :=
ΦT (n, 1) ∈ Rn×m, Y (n) := Y (n, 1) ∈ Rn andP (n) :=
P (n, 1) ∈ Rm×m. Then it is strightforward to see that the
recursive estimation presented in (15) is the least-squares
estimation that minimizes the error function in (13).

Remark 2 ΦT (n)Φ(n) is always singular forn < m.
ΦT (n)Φ(n) is nonsingular forn ≥ m except for the case
where measurements are only taken at a set of measure
zero, for example, a line splitting two Gaussian radial basis
functions equally such thatφi(ν) = φj(ν). In practice, we
start the recursive LSE algorithm in(15) with initial states
Θ̂(0) and P (0) ≻ 0 which corresponds to the situation in
which the parameters have an a priori distribution and keep
running the recursive algorithm with new measurements.
With these initial values, we have

P−1(n) := P−1(0) + ΦT (n)Φ(n) ≻ 0. (16)

In the next subsection, we elaborate on the case of noisy
observation and the resulting effects on the estimated field
and its gradient.

Noisy Measurements

Consider the measurement model (2) with the sensor noise
w(k), which is assumed to be a white noise sequence with
an unknown varianceW :

E(w(k)) = 0, E(w(k)w(z)) =

{

W ≻ 0 if k = z

0 if k 6= z
,

(17)
where E denotes the expectation operator. Moreover, we
assume that there existsL < ∞ so that

|w(k)| < L with probability one (w.p.1)∀k. (18)

Given the measurement data set

{y(µ) |µ ∈ S} whereS = {νk | 1 ≤ k ≤ n}

and the sensor noise{w(k) | k ∈ {1, · · · , n}} defined in (17)
and (18), an agent will estimatêΘ(n) using the recursive

LSE algorithm in (15). Let the estimation error vector be
Θ̃(n) := Θ̂(n)−Θ. We also define the error of the estimated
field at the locationν ∈ R by

µ̃(S, ν) := µ̂(S, ν) − µ(ν) = φT (ν)Θ̃(|S|), (19)

where|S| is the cardinality of the setS. The error of the
estimated field atν ∈ M is then obtained by

µ̃(S, ν) = E(µ̃(S, ν)) + ǫ(S, ν), (20)

where

E(µ̃(S, ν)) := φT (ν)

[

P (|S|)
∑

νt∈S

φ(νt)φ
T (νt) − Im

]

Θ,

ǫ(S, ν) := φT (ν)



P (|S|)
|S|
∑

t=1

φ(νt)w(t)



 ,

where |S| is the total number of collective measurements
for the associated agent. For persistent exciting coordination
strategies (ΦT

∗ Φ∗ ≻ 0), the estimator is asymptotically2

unbiased

lim
|S|→∞

E(µ̃(S, ν)) = 0, ∀ν ∈ M. (21)

For a large number of|S|, the variance of the estimation
error is given by

E(ǫ(S, ν)ǫT (S, ν)) = φT (ν)WP (|S|)φ(ν),

= φT (ν)
W

|S|R
−1(S)φ(ν),

(22)

whereR(S) is defined by

R(S) :=

[

P−1(0)

|S| +
1

|S|
∑

νk∈S

φ(νk)φT (νk)

]

. (23)

Remark 3 From (22), it is straightforward to see that the
estimation error variance is a function of the evaluated po-
sition ν in M, is proportional to the varianceW , and de-
creases at the rate of1/|S| and R−1(S). R(S) asymptot-
ically serves as a time average of outer products of basis
functions evaluated at the measurement points inS, which
implies that the error variance is smaller at places where
the agent has collected more samples.

The gradient of the field of interest is denoted by

∇µ(ν) :=
∂µ(x)

∂x

∣

∣

∣

x=ν
. (24)

2 It is asymptotically unbiased if a priori distribution ofΘ(0) and
P (0) is not available.
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From (11), we have

∇µ(ν) =
∂φT (x)

∂x

∣

∣

∣

x=ν
Θ =: φ′T (ν)Θ ∈ R2×1, (25)

whereφ′T (ν) ∈ R2×m. Thus, the gradient of the estimated
field based on observationsS := {νk}n

k=1 and{y(µ)}µ∈S

is given by

∇µ̂(S, ν) := φ′T (ν)Θ̂(|S|) ∈ R2×1. (26)

The error of the estimated gradient at the locationν ∈ M
is obtained by

∇µ̃(S, ν) := φ′T (ν)Θ̂(|S|) −∇µ(ν) = φ′T (ν)Θ̃(|S|)
= E(∇µ̃(S, ν)) + ∇ǫ(S, ν),

(27)

where

E(∇µ̃(S, ν)) = φ′T (ν)

[

P (|S|)
∑

νk∈S

φ(νk)φT (νk) − Im

]

Θ,

∇ǫ(S, ν) := φ′T (ν)



P (|S|)
|S|
∑

k=1

φ(νk)w(k)



 .

For ΦT
∗ Φ∗ ≻ 0, the gradient estimator is asymptotically

unbiased

lim
|S|→∞

E(∇µ̃(S, ν)) = 0, ∀ν ∈ M. (28)

The covariance matrixE(∇ǫ(S, ν)∇ǫT (S, ν)) is obtained
by

φ′T (ν)
W

|S|R
−1(S)φ′(ν), (29)

whereR(S) is defined in (23). Now we present our collab-
oratively learning control protocol.

3.2 Cooperative Control

Each of mobile agents receives measurements from neigh-
bors, then it updates its gradient of the estimated field using
Θ̂ from the recursive algorithm presented in (15). Subse-
quently, based on this updated gradient, the control for its
coordination will be decided. Hereafter, we apply a new time
notation used for the coordination, to the recursive LSE al-
gorithm in (15). In particular, we replacen − s ∈ Z≥0 by
t ∈ Z≥0 andn ∈ Z≥0 by t + 1 ∈ Z≥0 in (15) such that the
resulting recursive algorithm with the new time index for

agenti at its positionqi(t) is given by

Ki(t + 1) = Pi(t)Φ
T
∗i

(

Is + Φ∗iPi(t)Φ
T
∗i

)−1
,

Pi(t + 1) = (Im − Ki(t + 1)Φ∗i)Pi(t),

Θ̂i(t + 1) = Θ̂i(t) + Ki(t + 1)
[

Y∗i − Φ∗iΘ̂i(t)
]

,

∇µ̂i(t, qi(t)) = φ′T (qi(t))Θ̂i(t + 1),
(30)

where∇µ̂i(t, ν) : Z≥0 × M → R2 denotes the gradient
of the estimated field atν based on measurements before
the time t + 1. Y∗i and Φ∗i of agenti are defined in the
same way asY∗ andΦ∗ are defined in (15).Y∗i is the col-
lection of collaboratively measured data. From (2), for all
j ∈ N (i, q(t)) ∪ {i}, we have

Y∗i = Φ∗iΘ +











...

wj(k)
...











=: Φ∗iΘ + w∗i(t), (31)

where the sampled time of the measurements can vary
among sensors but we label the time index byt for any
sampled time contained in a measurement period betweent
andt + 1. wj(k) is the measurement noise of sensorj, and
is independently and identically distributed overj ∈ I. We
also define a new variablew∗i(t) as in (31) for later use.

Based on the latest update of the gradient of the estimated
field ∇µ̂i(t, qi(t)), a distributed controlvi(t + 1) in (1) for
agenti is proposed by

vi(t + 1) :=
γ(t + 1)

∆t

[

∆t

γ(t)
vi(t) + γ(t)ui(t)

]

, (32)

with

ui(t) := −∇U(qi(t)) − kdi

∆t

γ(t)
vi(t)

+
∑

j∈N (i,q(t))

aij(q(t))

(

∆t(vj(t) − vi(t))

γ(t)

)

+ k4∇µ̂i(t, qi(t)),

(33)

wherek4 ∈ R>0 is a gain factor for the estimated gradient
andkdi ∈ R≥0 is a gain for the velocity feedback. The first
term in the right-hand side of (33) is the gradient of the ar-
tificial potential defined in (10) which attracts agents while
avoiding collisions among them. Also it restricts the move-
ments of agents insideM; appropriate artificial potentials
can be added toU(qi) for agents to avoid obstacles inM.
The second term in (33) provides damping. The third term
in (33) is an effort for agenti to match its velocity with those
of neighbors. This term is used for the “velocity consensus”
and serves as a damping force among agents. The gradient
ascent of the estimated field is provided as the last term.
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The control for the coordination of sensing agents gradu-
ally decreases for perfect tracking of the maximum of an
unknown field in spite of the estimation based on the noisy
measurements. We have proposed the control protocol in
(32) with a standard adaptive gain sequenceγ(t) that satis-
fies the following properties

γ(t) > 0,

∞
∑

t=1

γ(t) = ∞,

∞
∑

t=1

γ2(t) < ∞,

lim
t→∞

sup[1/γ(t) − 1/γ(t− 1)] < ∞.

(34)

This gain sequence is often used for stochastic approxima-
tion algorithms [17,18] and enables us to apply the ODE
approach [17,28,29] for convergence analysis.

For the convenience of analysis, we change variables. In
particular, we introducepi(t), a scaled version of the velocity
statevi(t):

pi(t) :=
∆t

γ(t)
vi(t), (35)

wherevi(t) is the control input to agenti as defined in (32).
After the change of variables in (35), the resulting dynamics
of agenti is given by

{

qi(t + 1) = qi(t) + γ(t)pi(t),

pi(t + 1) = pi(t) + γ(t)ui(t),
(36)

where we applied new notations to (1) by replacing∆tvi(t)
by γ(t)pi(t) , t + ∆t ∈ R≥0 by t + 1 ∈ Z≥0 andt ∈ R≥0

by t ∈ Z≥0.

Incorporating the discrete time model in (36) along with the
proposed control in (32) gives

qi(t + 1) = qi(t) + γ(t)pi(t),

pi(t + 1) = pi(t) + γ(t)
{

−∇U(qi(t)) − kdipi(t)

−∇ΨG(pi(t)) + k4φ
′T (qi(t))Θ̂i(t + 1)

}

,

(37)

where∇ΨG(pi(t)) is the gradient of the disagreement func-
tion (defined in (3) and (5)) with respect topi:

∇ΨG(pi(t)) =
∑

j∈N (i,q(t))

aij(q(t))(pi(t) − pj(t)).

In the next section, we will transform our multi-agent system
into a recursive stochastic algorithm with states

x(t) := col(q1, · · · , qNs
(t), p1(t), · · · , pNs

(t)),

and
ϕ(t) := col(Θ̃1(t), · · · , Θ̃Ns

(t)).

4 Convergence Analysis

In order to analyze the convergence properties of (30), (37)
and (34), we utilize Ljung’s ordinary differential equation
(ODE) approach developed in [17,28,29]. In particular,
Ljung [17,28] presented an analysis technique of general
recursive stochastic algorithms in the canonical form of

x(t) = x(t − 1) + γ(t)Q(t; x(t − 1), ϕ(t)), (38)

along with the observation process

ϕ(t) = g(t; x(t − 1), ϕ(t − 1), e(t)). (39)

In order to use the ODE approach, for this nonlinear obser-
vation process in (39), the following regularity conditions in
[28] need to be satisfied. LetDR be a subset of thex space
in (38), where the regularity conditions hold.

C1: ‖g(x, ϕ, e)‖ < C for all ϕ, e for all x ∈ DR.
C2: The functionQ(t, x, ϕ) is continuously differentiable

with respect tox andϕ for x ∈ DR. The derivatives are,
for fixed x andϕ, bounded int.

C3: g(t; x, ϕ, e) is continuously differentiable with respect
to x ∈ DR.

C4: Defineϕ̄(t, x̄) as

ϕ̄(t, x̄) = g(t; x̄, ϕ(t − 1, x̄), e(t)), ϕ̄(0, x̄) = 0, (40)

and assume thatg(·) has the property

‖ϕ̄(t, x̄) − ϕ(t)‖ < C max
n≤k≤t

‖x̄ − x(k)‖,

if ϕ̄(n, x̄) = ϕ(n). This means that small variations inx
in (39) are not amplified to a higher magnitude for the
observationsϕ.

C5: Let ϕ̄1(t, x̄) and ϕ̄2(t, x̄) be solutions of (40) with
ϕ̄1(s, x̄) := ϕ0

1 and ϕ̄2(s, x̄) := ϕ0
2. Then defineDs as

the set of allx̄ for which the following holds:

‖ϕ̄1(t, x̄) − ϕ̄2(t, x̄)‖ < C(ϕ0
1, ϕ

0
2)λ

t−s(x̄),

wheret > s andλ(x̄) < 1. This is the region of expo-
nential stability of (39).

C6: limt→∞ EQ(t, x̄, ϕ̄(t, x̄)) exists for x̄ ∈ DR and is
denoted byf(x̄). The expectation is over{e(·)}.

C7: e(·) is a sequence of independent random variables.
C8:

∑∞
t=1 γ(t) = ∞.

C9:
∑∞

t=1 γp(t) < ∞ for somep.
C10: γ(·) is a decreasing sequence.
C11: limt→∞ sup[1/γ(t) − 1/γ(t− 1)] < ∞.

For practical algorithm implementation, the projection or
saturation is often introduced [17,18] to meet the bounded-
ness condition required in the ODE approach [17]. Since
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dynamics of agents are given by a single integrator, i.e., the
position of the agent can be controlled

qi(t + 1) = qi(t) + γ(t)pi(t),

wherepi(t) is the control, we can apply the usual saturation
given by[ · ]D

x(t) = [Ω(t)]D =

{

Ω(t), Ω(t) ∈ D

x(t − 1), Ω(t) /∈ D,
(41)

wherex(t) andΩ(t) denote the left- and right-hand sides
of (38) respectively, i.e., the projected algorithm updates
only if the updated value belongs toD otherwise it keeps
the previous state. Our closed-loop system in (37) will be
converted to the canonical form in (38). Throughout the
paper, we assume that the projection is applied to the resulted
algorithm in the form of (38). The projection disappears in
the averaged updating directions. Hence, the convergence
properties of the projected algorithm can be studied as if
there was no projection in (38). For more details, see [29,30]
and references therein.

We will then utilize the following corollary reported in [29].

Corollary 4 (Ljung [29]) Consider the algorithm(38), (39)
and (41) subject to the regularity conditionsC1-C11. Let
DR be an open connected subset ofDS . Let D in (41) be
the compact subset ofDR such that the trajectories of the
associated ODE

d

dτ
x(τ) = f(x(τ)) (42)

where
f(x) := lim

t→∞
EQ(t; x, ϕ̄(t, x)),

that start in D remain in a closed subset̄DR of DR for
τ > 0. Assume that the differential equation(42) has an
invariant setDc with domain of attractionDA ⊃ D.

Then either

x(t) → Dc, with probability one ast → ∞, (43)

or

x(t) → ∂D, with probability one ast → ∞, (44)

where∂D is the boundary ofD.

The conclusion (44) is possible only if there is a trajectory
of the differential equation in (42) that leavesD in (41).

Now we present our main results. The following lemma
shows how to transform our coordination and estimation
algorithms to the canonical forms in (38) and (39).

Lemma 5 The algorithms(37)and(30)can be transformed
into the forms of(38) and (39) respectively, using the fol-
lowing definitions;

q(t) := col(q1(t), · · · , qNs
(t)) ∈ R2Ns ,

p(t) := col(p1(t), · · · , pNs
(t)) ∈ R2Ns ,

x(t) := [qT (t), pT (t)]T ∈ R4Ns ,

Q(t; x(t − 1), ϕ(t))

:=

[

p

−∇U(q) − (L̂(q) + Kd)p −∇Ĉ(ϕ, q)

]

,

(45)

whereKd = diag(kd1, · · · , kdNs
) ⊗ I2 ≻ 0. The gradient

of the estimated cost function∇Ĉ(ϕ(t), q(t − 1)) ∈ R2Ns

is defined by

− k4col(∇µ̂1(t − 1, q1(t − 1)), · · · ,

∇µ̂Ns
(t − 1, qNs

(t − 1)))

= −k4col(φ′T (q1(t − 1))Θ̂1(t), · · · ,

φ′T (qNs(t − 1))Θ̂Ns(t)).

For the observation process in(39), we have:

ϕ(t) = g(t; x(t − 1), ϕ(t − 1), e(t))

= A(t; x(t − 1))ϕ(t − 1) + B(t; x(t − 1))e(t),
(46)

where

ϕ(t) := col(Θ̃1(t), · · · , Θ̃Ns
(t)) ∈ RmNs ,

A(t; x(t − 1)) := diag(Im − K1(t)Φ∗1, · · · ,

Im − KNs
(t)Φ∗Ns

) ∈ RmNs×mNs ,

B(t; x(t − 1)) := diag(K1(t), · · · , KNs
(t)) ∈ RmNs×O,

e(t) := col(w∗1(t − 1), · · · , w∗Ns
(t − 1)) ∈ RO,

whereO varies according to the number of collaborative
measurements at each iteration.

Proof: From (30), notice that:

Θ̃i(t) = [Im−Ki(t)Φ∗i]Θ̃i(t−1)+Ki(t)w∗i(t−1). (47)

The rest of the proof is straightforward and so is omitted.2

Two lemmas to validate the regularity conditionsC1-C11
will be presented under the following assumptions:

M1: Each agent collectss ≥ m number of measurements
at locations{νk}s

k=1 from itself and neighbors so that

s
∑

k=1

φ(νk)φT (νk) ≻ 0,

wherem is in (11).
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M2: The artificial potential force and the adjacency ma-
trix are continuously differentiable with respect toq and
derivatives are bounded.

M3: The projection algorithm (41) is applied to the co-
ordination algorithm (38). LetD in (41) be a convex
and compact set defined byD := MNs × Mp, where
Mp := [pmin, pmax]

2Ns .

Remark 6 M1 can be viewed as a persistent excitation con-
dition in adaptive control [27].M2 can be satisfied, for in-
stance, see(8)and [4]. M3 is used to satisfy the boundedness
condition for the ODE approach and it is also very useful to
model the realistic control saturations for mobile vehicles.

Lemma 7 LetAi(t) := Ai(t; x(t−1)). UnderM1 andM3,
the matrix

Ai(t) := [Im − Ki(t)Φ∗i] (48)
is a positive definite matrix for alli ∈ I and t ∈ Z≥0. All
eigenvalues ofAi(t) in (48)are nonnegative and strictly less
than1, i.e.,

λmin(Ai(t)) > 0, λmax(Ai(t)) < 1.

Hence, the induced matrix two norm ofAi(t) is strictly less
than1:

‖Ai(t)‖ < 1, ∀i ∈ I, ∀t ∈ Z≥0. (49)

Proof: By the definition ofAi, it is a symmetrical matrix.

Ai(t) = Im − Pi(t)Φ
T
∗i(Is + Φ∗iPi(t)Φ

T
∗i)

−1Φ∗i.

wherePi(t) ≻ 0 is a positive definite matrix. From (30),
notice that

Pi(t − 1) − Pi(t) ≻ 0, Pi(t) = Ai(t)Pi(t − 1) ≻ 0,

impliesPi(t − 1)(Im − Ai(t)) ≻ 0.

Hence, we conclude that0 ≺ Ai(t) = AT
i (t) ≺ Im. More-

over, sinceAi(t) ≻ 0, there exists a square root matrixF
so thatAi(t) = FT F and F = diag(

√
λ1, · · · ,

√
λm)R

whereR is the orthonormal matrix andλ1 = λmax(Ai(t)) >
λ2 > · · · > λm = λmin(Ai(t)) > 0. Since Ai(t) =

FT F ≺ Im implies that
√

λmax(FT F ) < 1, we have
λmax(Ai(t)) = λmax(F

T F ) = ‖F‖2 < 1 and‖Ai(t)‖ =
√

λmax(AT
i (t)Ai(t)) < 1. 2

Lemma 8 Consider the transformed recursive algorithm af-
ter applying Lemma 5 under assumptionsM1-M3. Then
the algorithm is subject to the regularity conditionsC1-
C11, and

(

MNs \ Z
)

× Mp ⊂ D ⊂ DR, whereMp =

[pmin, pmax]
2Ns andZ is the set defined by

Z :=







q ∈ MNs

∣

∣

∣

∣

∑

j∈{i}∪N (i,q)

φ(qj)φ
T (qj) ⊁ 0, ∀ i ∈ I







.

(50)

Moreover,f(x) in (42) of Corollary 4 is given by

f(x) =

[

p

−∇U(q) − (L̂(q) + Kd)p −∇C(q)

]

, (51)

whereC(q) ∈ R≥0 is the collective performance cost func-
tion defined by

C(q) := k4

∑

i∈I
[µmax − µ(qi)], (52)

here k4 ∈ R>0 is a gain factor andµmax ∈ R>0 is the
maximum of the fieldµ.

Proof: Verifications ofC1-C11are as follows:

• C1:This is satisfied by the measurement noise assumption
in (17) and (18) with Lemma 7 underM1 andM3.

• C2: This is satisfied due to the assumptionM2 and
smooth and bounded derivatives of radial basis functions
in ∇Ĉ(ϕ, q) with respect toq.

• C3: A(t; ·) and B(t; ·) in (46) are functions of smooth
radial basis functions, therefore, they are smooth inDR.

• C4: We take the similar argument used in [31].
Notice that:

ϕ(t) − ϕ̄(t) = A(t; x)|x̃(t−1)(ϕ(t − 1) − ϕ̄(t − 1))

+
∂g

∂x

∣

∣

∣

x̃(t−1)

ϕ̃(t−1)

(x(t − 1) − x̄)

=
∂g

∂x

∣

∣

∣

x̃(t−1)

ϕ̃(t−1)

(x(t − 1) − x̄)

+

t−n
∑

i=2

∂g

∂x

∣

∣

∣

x̃(t−i)

ϕ̃(t−i)

(x(t − i) − x̄)





i−1
∏

j=1

A(t; x)|x̃(t−j)



 ,

where the mean value theorem was used for a smooth
g with respect tox and ϕ. [x̃T (s), ϕ̃T (s)]T is a point
between [xT (s), ϕT (s)]T and [x̄T (s), ϕ̄T (s)]T . From
Lemma 7 underM1 andM3, we have:

‖A(t; x)|x̃‖ ≤ 1 − δ < 1, ∀t. (45)

Therefore we obtain:

‖ϕ(t) − ϕ̄(t)‖ ≤
∥

∥

∥

∂g

∂x

∣

∣

∣

x̃(t−1)

ϕ̃(t−1)

∥

∥

∥
‖x(t − 1) − x̄‖

+

t−n
∑

i=2

(

i−1
∏

j=1

‖A(t; x)|x̃(t−j)‖
∥

∥

∥

∂g

∂x

∣

∣

∣

x̃(t−i)

ϕ̃(t−i)

∥

∥

∥× ‖x(t − i) − x̄‖)

≤
t−n
∑

i=1

(1 − δ)i−1 max
n≤s≤t

‖∂g

∂x
(s)‖ max

n≤s≤t
‖x(s) − x̄‖

<
1

δ
C max

n≤s≤t
‖x(s) − x̄‖ < C max

n≤s≤t
‖x(n) − x̄‖.
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• C5: For a fixedx̄, notice that:

ϕ̄i(t, x̄) =
t
∏

k=s+1

A(k; x̄)ϕ̄i(s, x̄)

+

t
∑

j=s+1





t
∏

k=j+1

A(k; x̄)



B(j; x̄)e(j), i ∈ {1, 2}.

UnderM1 andM3, ‖A(k; x̄)‖ < λ(x̄) for all k ∈ {s +
1, · · · , t}, whereλ(x̄) < 1. Hence we have:

‖ϕ̄1(t, x̄) − ϕ̄2(t, x̄)‖ < λt−s(x̄)‖ϕ̄1(s, x̄) − ϕ̄2(s, x̄)‖,

for all x̄ ∈
(

MNs \ Z
)

×Mp ⊂ DS , whereZ is the set
defined in (50).

• C6: Elements ofQ in (45) are deterministic functions of
x ∈ DR except for∇Ĉ(ϕ(t), q). Thanks toM1 and (28),
for a fixedq, we have

lim
t→∞

E(∇Ĉ(ϕ(t), q)) = ∇C(q),

which provesC6 and (51) simultaneously.
• C7: This is satisfied due to the measurement noise as-

sumption in (17).
• C8, C9, C10, C11:These are satisfied by the time varying

gain sequence defined in (34).2

Finally, the global performance cost that sensing agents to
minimize, is defined as

V (q(τ), p(τ)) := U(q(τ)) +
pT (τ)p(τ)

2
+ C(q(τ)). (53)

We have the following theorem regarding the convergence
properties of the proposed multi-agent system.

Theorem 9 For any initial state x0 = col(q0, p0) ∈
D, where D is a compact set as in(41), we con-
sider the recursive coordination algorithm obtained
by Lemma 5 under conditions from Lemma 8. Let
DA := { x ∈ D | V (x) ≤ a } be a level-set of the cost
function in (53). Let Dc be the set of all points inDA,
where d

dτ
V (x) = 0. Then every solution starting fromDA

approaches the largest invariant setDM contained inDc

with probability one ast → ∞, or {x(t)} has a cluster
point on the boundary∂D of D. Moreover, if{x(t)} does
not have a cluster point on∂D and (L̂(q) + Kd) ≻ 0,
∀x ∈ D, then any pointx⋆ = col(q⋆, 0) in DM is a critical
point of the cost functionV (x), which yields either a (local)
minimum ofV (x) or an inflection point, i.e.,

∂V (x)

∂x

∣

∣

∣

∣

∣

x=x⋆

= 0.

Proof: From Lemma 5, Lemma 8 and Corollary 4, the
asymptotic trajectoryx(τ) := col(q(τ), p(τ)) ∈ DR is
given by the associated ODE

dx(τ)

dτ
= f(x(τ)). (54)

Taking the derivative ofV (x(τ)) in (53) with respect toτ
and using (54), we obtain

dV (x(τ))

dτ
=

(

∂V (x)

∂x

)T

f(x(τ))

=

[

∇U(q(τ)) + ∇C(q(τ))

p(τ)

]T

[

p(τ)

−∇U(q(τ)) −∇C(q(τ)) − (L̂(q(τ)) + Kd)p(τ)

]

= −pT (τ)(L̂(q(τ)) + Kd)p(τ) ≤ 0.
(55)

From (9) and (53), we conclude thatV (x) is radially-
unbounded, i.e.,V (x) → ∞ as‖x‖ → ∞. Then

DA := { x | V (x) ≤ a }

is a bounded set withd
dτ

V (x) ≤ 0 for all x ∈ DA as in
(55), which is a positively invariant set. By LaSalle’s invari-
ant principle and Corollary 4,x(t) approaches the largest
invariant setDM contained inDc given by

{

x(τ)
∣

∣

∣ V̇ (x(τ)) = −pT (τ)(L̂(q(τ)) + Kd)p(τ) = 0
}

,

(56)
with probability one ast → ∞.

If (L̂(q)+Kd) ≻ 0 ∀x ∈ D, from (56), any pointx⋆ in DM

is the form ofx⋆(t) = col(q⋆(t), 0). Moreover, from (51),
we haveq̇⋆(t) ≡ 0 and0 ≡ −∇U(q⋆) − ∇C(q⋆), which
verifies thatx⋆ is a critical point of the cost functionV (x).
Hence this completes the proof. Q.E.D.

5 Simulation Results

We applied the proposed multi-agent system to static fields,
which are represented by twenty five radial basis functions as
depicted in the left side of Fig. 7 (uni-modal) and Fig. 9 (bi-
modal). The estimated field was updated once per iteration
used for the coordination of agents. Twenty five agents were
launched at random positions away from the maximum of
the field in the simulation study. Parameters used for the
numerical evaluation are given in Table 1. Simulation results
are evaluated for different parameters and conditions.
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Table 1
Parameters in the simulation.

Parameters Values

Number of agentsNs 25

Number of basis functionsm 25

Surveillance regionM [−5, 5]2

(d, d0, d1) (0.6, 1.5d, 3.5d)

(0.4, 1.62d, 3.5d)

Transmission ranger 4d

Noise levelW 1

(k1, k2, k3, k4) (0.1, 10, 0.1, 0.1)

Kd I2Ns ; 0.1I2Ns ; 0I2Ns

Saturation limitD [−5, 5]2Ns × [−1, 1]2Ns

γ(0) 0.2

Θ(0) 0m×1

P (0) 3Im

5.1 Standard Conditions

We consider the proposed multi-agent system under the stan-
dard operating conditions (used in Theorem 9), which in-
clude the projection algorithm defined in (41), velocity feed-
back (Kd ≻ 0 as defined in (45)), and an artificial potential
wall. Fig. 6-(a) shows that the recursively estimated field
by agent1 at the iteration timet = 20 under a noise level
W = 1. The swarming agents have the equilibrium dis-
tance ofd = 0.6 as defined in (7). The estimation error field
is also shown with colored contour lines as in Fig. 6-(a).
Fig. 6-(b) illustrates the estimated field by agent1 at iter-
ation timet = 200. The true field is illustrated in the left-
side of Fig. 7. As shown in Fig. 6-(b), twenty five swarming
agents have located the maximum point of the field success-
fully. The right-side of Fig. 7 shows the root mean square
(RMS) values of the spatially averaged error field achieved
by all agents with respect to the iteration time. All agents
managed to bring the RMS values of the estimation error
down around2 after150 iterations. With a bit higher damp-
ing coefficients contained inKd = I2Ns

, the rate of con-
vergence to the maximum point was slow as shown in the
right-hand side of Fig. 7. Hence, the group of agents does
not show much overshoot and oscillatory behavior around
the maximum point. Agents converge to a configuration near
the maximum point ast → ∞.

The proposed multi-agent system with a smaller communi-
cation range andKd = 0I2Ns

is applied to a bi-modal static
field, which is shown in the left-side of Fig. 9. Fig. 8 reminds
of the fact that the proposed agents can split into different
groups according to the configuration of the global network
cost functionV defined in (53). It is straightforward to un-
derstand that agent1 does not have information on the other
mode located at the upper-right side of the surveillance re-
gion as shown in Fig. 8, which results in higher RMS esti-
mation error values plotted in the right-hand side of Fig. 9

Fig. 6. Trajectories of twenty five learning agents ford = 0.6,
W = 1 andKd = I2Ns , at iteration timest = 40 (a) andt = 200
(b) under the projection algorithm. The estimated field by agent1 is
shown as a background in colors. Agent1 is plotted as a green dot.
Thin contour lines represent the error field between the truefield
and the estimated field. (+) and (o) represent, respectively, initial
and final locations. Solid lines represent trajectories of agents.
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Fig. 7. A uni-modal field of interest (left). The root mean square
(RMS) values of the spatially averaged error field achieved by all
agents with respect to the iteration number (right). Parameters are
d = 0.6, W = 1, andKd = I2Ns , and the projection was used.

Fig. 8. (a), (b): The proposed agents are splitting into two groups
for multi-modes under standard conditions. The estimated field by
agent1 is shown as a background in colors. Thin contour lines
represent the error field between the true field and the estimated
field.

as compared to those for the previous case (Fig. 7).

Fig. 10 illustrates a case without communication and the
swarming capabilities of agents. Only a couple of agents
manage to approach the maximum point with slow conver-
gence rates as compared to the previous case in Fig. 6. The
lowest RMS value of the estimation error achieved by agents
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Fig. 9. A bi-modal field of interest (left). The root mean square
(RMS) values of the spatially averaged error field achieved by
agent1 with respect to the iteration number for the bi-modal field
of interest (right).

Fig. 10. (a), (b): Trajectories of agents without communication and
the swarming algorithm ford = 0.6, W = 1, and Kd = I2Ns ,
and the projection was not used.

was about6. This simulation clearly justifies the usage of
the communication network and swarming algorithms in this
our proposed multi-agent system.

5.2 Without the Velocity Feedback

We consider a case without the velocity feedback (i.e.,Kd =
0I2Ns

) for the uni-modal field of interest. Without the ve-
locity feedback, there will be no dissipative terms once the
consensus of velocities of agents is achieved, which explains
the oscillatory behavior of agents in Fig. 11. The group dis-
agreement functionΨG(p(t)) = 1

2pT (t)L̂(q(t))p(t) with
respect to the iteration number is shown in Fig. 12.

We also consider a case without both the velocity feedback
and the projection algorithm (i.e., no saturations on both
positions and velocities) for the bi-modal field of interest.
In this simulation, agents happened to locate two maximum
points of the bi-modal field as depicted in Figs. 13 and 14.
The group disagreement function and convergence rate of
the agents are illustrated in Fig. 14. In this simulation, the
artificial potential wall prevents agents from going outside
of the compact surveillance regionM.

5.3 Without the Artificial Potential Wall

Finally, we consider a case without the potential wall and
with the projection algorithm for the uni-modal field of in-

Fig. 11. (a), (b): Trajectories of agents ford = 0.6, W = 1, and
Kd = 0I2Ns , and the projection was used.
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Fig. 12. The group disagreement functionΨG(p(t)) with respect
to the iteration number. Parameters ared = 0.6, W = 1, and
Kd = 0I2Ns , and the projection was used.

Fig. 13. (a), (b): Trajectories of agents ford = 0.6, W = 1, and
Kd = 0I2Ns , and the projection was not used.

terest. In addition, we relocate the maximum of the field at
the boundary of the surveillance region. As can be seen in
Fig. 15, agents withKd ≻ 0 have located the maximum
point of the field and converge to a configuration around the
boundary of the surveillance region. The projection algo-
rithm ensures that agents stay inside of the compact setM.

6 Conclusions

This paper presented a novel class of self-organizing sensing
agents that form a swarm and learn through noisy measure-
ments cooperatively with neighboring agents to estimate an

13



50 100 150 200 250 300

5

10

15

20

25

iterations

G
ro

up
 d

is
ag

re
em

en
t

50 100 150

2

4

6

8

10

12

14

iterations

R
M

S
 e

rr
or

Fig. 14. The group disagreement functionΨG(p(t)) with respect
to the iteration number (left). The root mean square (RMS) values
of the spatially averaged error field achieved by agent1 with
respect to the iteration number (right). Parameters ared = 0.6,
W = 1, andKd = 0I2Ns , and the projection was not used.

Fig. 15. (a), (b): The projection algorithm guarantees thatagents
are inside of the compact surveillance regionM := [−5, 5]2 even
without the artificial potential wallU2 which pushes agents back
into M when they approach the boundary ofR.

unknown field of interest for gradient climbing. The pro-
posed cooperatively learning control consists of motion co-
ordination based on the recursive estimation of an unknown
field of interest with measurement noise. Our strategy of the
cooperative learning control can be applied to a large class
of coordination algorithms for mobile agents in a situation
where the field of interest is not known a priori and to be
estimated. We have shown that the closed-loop dynamics of
the proposed multi-agent system can be transformed into a
form of a stochastic approximation algorithm. Hence, the
convergence properties of the proposed multi-agent system
were analyzed using the ODE approach and verified by a
simulation study with respect to different parameters and
conditions. Simulation study on the proposed multi-agent
system and learning agents without communication and the
swarming effort clearly demonstrated the advantage of the
communication network and the swarming effort. A possi-
ble future work is to deploy heterogeneous mobile sensing
agents (each with different parameters) to study how mix-
ture of different types of agents can be coordinated for sub-
optimality by a consensus type algorithm that enforces all
agents converge to the same set of parameters.
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