HYBRID CONTROL OF DRY CLUTCH ENGAGEMENT

Alberto Bemporad†‡, Francesco Borrelli*, Luigi Glielmo†, Francesco Vasca†

† Dipartimento Ingegneria dell’Informazione, Università di Siena, Via Roma 56, 53100 Siena, Italy,
e-mail: bemporad@aut.ee.ethz.ch
‡ Automatic Control Laboratory, ETH Zentrum, ETL I 26, 8092 Zurich, Switzerland
e-mail: borrelli@aut.ee.ethz.ch
* Facoltà di Ingegneria, Università del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
e-mail: glielmo,vasca@unisannio.it

Keywords: Automotive control, Automated Manual Transmission, Predictive control, Piecewise linear controllers, Friction.

Abstract

This paper proposes a novel piecewise linear feedback control strategy for the automotive dry clutch engagement process. Based on a dynamic model of the powertrain system, the controller is designed by minimizing a quadratic performance index subject to constraints on the inputs and on the states. The resulting model predictive controller is shown to consist of a piecewise linear feedback control and can be tuned so that fast engagement, small friction losses and smooth lock-up are achieved. Numerical results show the good performance of the closed-loop system.

1 Introduction

Recently, the engagement control of automotive dry clutches is becoming more and more important, due to the increasing use of automated manual transmission in modern vehicles [9]. The engagement control of dry clutches must satisfy different and sometimes conflicting objectives: small friction losses, fast lock-up, preservation of driver comfort. To this aim, several control strategies have been proposed in the literature. In [13] the problem of avoiding the use of throttle during the engagement in diesel engine vehicles is considered. A fuzzy controller is proposed in [4] where the influence of different friction coefficients and vehicle operating conditions is also analyzed. A similar analysis is also carried out in [7] where an H^∞ controller is designed by using a suitably identified dynamic model of the powertrain. The engagement clutch control in parallel hybrid electric vehicles and in heavy duty trucks are considered in [8] and [12], respectively. In [10] a predictive control strategy for continuous variable transmission has been proposed. In [5, 6] the authors have proposed a finite horizon Linear Quadratic feedforward-feedback controller as an effective solution for the dry clutch engagement control problem. In that controller, however, the constraints on the control and state variables were not considered explicitly in the solution of the LQ problem. The controller proposed in this paper tries to overcome this limitation by using a Model Predictive Control (MPC) strategy. The controller is designed by minimizing a quadratic performance index (which takes into account the clutch friction losses and idle speed regulation) subject to constraints on the control variables (the normal force, the engine torque and their derivatives), and on the state variables (the engine speed). As it requires a quadratic program to be solved on-line, an MPC controller is clearly prohibitive on standard automotive control hardware. However, in [2] the authors have shown how to move completely of line the MPC computation effort, by reducing the control law to a piecewise linear affine function of the states. Such a function is computed off-line by using a multiparametric programming solver, which divides the state space into polyhedral regions, and for each region determines the linear gain which produces a control action equivalent to that one of MPC.

The paper is organized as follows. After reviewing the basics of MPC and derive the quadratic program associated to the controller in Section 2, in Section 3 the multiparametric quadratic programming algorithm to obtain the explicit form of the MPC law is summarized. In Section 4 the model of the clutch system is presented. The design of an MPC controller and the analysis in simulation of different controller tunings are detailed in Section 5.

2 Model Predictive Control

Based on the discrete-time version

\[\begin{align*}
 x_{t+1} &= A x_t + B u_t, \\
 y_t &= C x_t,
\end{align*} \]

of the model of the system to be regulated, MPC aims at making the output y_t track the reference trajectory r_t while fulfilling the constraints

\[\begin{align*}
 y_{\min} &\leq y_t &\leq y_{\max}, \\
 u_{\min} &\leq u_t &\leq u_{\max}, \\
 \delta u_{\min} &\leq \delta u_t &\leq \delta u_{\max},
\end{align*} \]

at all time instants $t \geq 0$, where $\delta u_t = u_t - u_{t-1}$ is the increment of the input signal. In (1)–(2), $x_t \in \mathbb{R}^n$, $u_t \in \mathbb{R}^m$, $y_t \in \mathbb{R}^m$.

and \(y_t \in \mathbb{R}^p \) are the state, input, and output vector respectively, \(r_t \in \mathbb{R}^p \), \(y_{\text{min}} \leq y_{\text{max}} \) (\(u_{\text{min}} \leq u_{\text{max}} \)) are bounds on outputs (inputs), and the pair \((A, B)\) is stabilizable. Assume that a full measurement of the state \(x_t \) is available at the current time \(t \). Consider the prediction error \(\varepsilon_{t+k|t} = y_{t+k|t} - r_t \) and the performance index

\[
V = \sum_{k=0}^{N_o-1} \varepsilon_{t+k|t}^T Q \varepsilon_{t+k|t} + \delta u_{t+k}^T R \delta u_{t+k}.
\]

(3)

MPC solves the following optimization problem

\[
\begin{align*}
\min_{U_t} & \quad \{ V(\xi, U_t) \}, \\
\text{subject to} & \quad \begin{cases}
 y_{\text{min}} \leq y_{t+k|t} \leq y_{\text{max}}, & k = 1, \ldots, N_y \\
 u_{\text{min}} \leq u_{t+k} \leq u_{\text{max}}, & k = 0, 1, \ldots, N_u \\
 \delta u_{\text{min}} \leq \delta u_{t+k} \leq \delta u_{\text{max}}, & k = 0, 1, \ldots, N_{cu} \\
x_{t|t} = x_t, \\
x_{t+k|t} = Ax_{t+k|t} + Bu_{t+k}, & k \geq 0 \\
u_{t+k+1} = u_{t+k} + \delta u_{t+k}, & k \geq 0 \\
\delta u_{t+k} = 0, & N_u \leq k < N_y
\end{cases}
\end{align*}
\]

(4)

where the column vector \(U_t \triangleq [\delta u_{t+1}, \ldots, \delta u_{t+N_u}] \in \mathbb{R}^s \), \(s \triangleq m N_u \), is the optimization vector, \(\xi_t \triangleq [x_{t|t}, u_{t|t}, r_t] \) is the column vector of the quantities available at \(t \), \(x_{t+k|t} \) denotes the predicted state vector at time \(t+k \), obtained by applying the input sequence \(\delta u_{t+k} \) to model (1) starting from the state \(x_t \). In (4), we assume that \(Q = Q' \succeq 0, R = R'> 0, P \succeq 0, (Q, A) \) detectable (for instance \(Q = C' C \) with \((C, A) \) detectable). \(N_y, N_u \) are respectively the output and the input horizons, \(N_y \geq N_u, \) and \(N_{cu}, N_{cu} \) are respectively the output and the input constraint horizons. Note that the optimal control problem in (4) is based on the condition \(\delta u_{t+k} = 0 \) for \(k \geq N_u \), i.e., the control signal is kept constant after \(N_u \) steps in the prediction [11].

By substituting \(x_{t+k|t} = A^k x_t + \sum_{j=0}^{k-1} A^j Bu_{t+k-j-1} \) in (4), the optimization problem can be rewritten in the following compact form:

\[
\begin{align*}
\min_{U} & \quad \{ V(\xi, U) \} = \frac{1}{2} x' C' \xi + \frac{1}{2} U' H U + \xi' F \xi, \\
\text{subject to} & \quad G U \leq W + E \xi,
\end{align*}
\]

(5)

where \(H = H' \succeq 0, \) and \(H, F, Y, G, W, E \) are easily obtained from \(Q, R, \) and (4) (as only the optimizer \(U \) is needed, the term involving \(Y \) is usually removed from (5)), and for notational simplicity we omitted the explicit time-dependence. Because problem (5) depends on \(\xi \), the direct implementation of MPC would require the on-line solution of a Quadratic Program (QP) at each time step. Although efficient QP solvers based on active-set methods or interior point methods are available, computing the input \(u_t \) demands significant on-line computation effort, which might be prohibitive on standard low-cost automotive control hardware. In this paper we circumvent such a computation problem by proposing an alternative way to solve off-line problem (5) for all \(\xi \) within a given range of values, i.e., by considering (5) as a multi-parametric Quadratic Program (mp-QP).

Once the multi-parametric problem (5) has been solved, i.e., the solution \(U^*(\xi) \) of (5) has been found, the model predictive controller (4) is available explicitly, as the optimal input \(\delta u^*_t \) consists simply of the first \(m \) components of \(U^*(\xi) \) and at time \(t \) the control

\[
u_t = \delta u^*_t + u_{t-1}, \]

(6)

is applied as input to system (1).

3 Multi-Parametric Quadratic Programming

In [2] it was shown that the control law resulting from the solution of the mp-QP problem, is continuous and piecewise affine. To this end, define

\[
z \triangleq U + H^{-1} F' \xi,
\]

(7)

\(z \in \mathbb{R}^s, \) and transform (5) by completing squares to obtain the equivalent problem

\[
\begin{align*}
\min_{\xi, z} & \quad \{ V(\xi, z) = \frac{1}{2} z' H z \}, \\
\text{subject to} & \quad G z \leq W + S \xi,
\end{align*}
\]

(8)

where \(S \triangleq E + G H^{-1} F', \) and \(V(\xi, z) = V(\xi, U) - \frac{1}{2} \xi' (Y - F H^{-1} F') \xi \). The mp-QP problem consists of computing the optimizer \(z^*(\xi) \) and the value function \(V^*(\xi) = V(\xi, z^*(\xi)) \) for all possible vectors \(\xi \) in a given compact set \(X \). The solution of mp-QP problems can be approached by employing the principles of parametric nonlinear programming, and in particular the first-order Karush-Kuhn-Tucker (KKT) optimality conditions [1]. For each feasible combination of active constraints, the optimal \(z \) and Lagrange multipliers \(\lambda \) are uniquely defined affine functions of \(\xi \) and are given by

\[
\begin{align*}
\lambda &= -(G H^{-1} G')^{-1} (\tilde{W} + \tilde{S} \xi), \\
z &= H^{-1} G' (G H^{-1} G')^{-1} (\tilde{W} + \tilde{S} \xi)
\end{align*}
\]

(9)

where \(\tilde{\lambda}, \tilde{G}, \tilde{W}, \tilde{S} \) correspond to the set of active constraints. This result characterizes the solution only locally in the neighborhood of a specific \(\xi \). This characterization remains valid as long as the set of active constraints does not change as we change \(\xi \). The set of parameters \(\xi \) where this combination of active constraints remains optimal is defined as the critical region \(CR_0 \). This region can be characterized easily. Choose an arbitrary vector of parameter values \(\xi_0 \in X \) and let \((\zeta_0, \lambda_0) \) be the corresponding values satisfying the KKT conditions, which are obtained by solving a QP for \(\xi = \xi_0 \). Then, (9)-(10) can be computed by simply looking at the constraints in (8) which are active at the minimizer \(\zeta_0 \), and then building matrices \(\tilde{G}, \tilde{W}, \) and \(\tilde{S} \) accordingly. The variable \(z \) from (10) must satisfy the constraints in (8), i.e.,

\[
G H^{-1} G' (G H^{-1} G')^{-1} (\tilde{W} + \tilde{S} \xi) \leq W + \tilde{S} \xi,
\]

(11)

and by KKT conditions the Lagrange multipliers in (9) must remain nonnegative, i.e.,

\[
-(G H^{-1} G')^{-1} (\tilde{W} + \tilde{S} \xi) \geq 0,
\]

(12)
as we vary ξ. After removing the redundant inequalities from (11) and (12) we obtain a compact representation of CR_0. Obviously, CR_0 is a polyhedron in the ξ-space, and represents the largest set of $\xi \in X$ such that the combination of active constraints at the minimizer remains unchanged. Once the critical region CR_0 has been defined, the rest of the space $CR_{\text{rest}} = X - CR_0$ has to be explored and new critical regions generated.

The argument (9)–(12) is repeated in each new critical region, until the whole ξ-space has been covered. Then, those polyhedral regions CR_i are determined where the first m components δu^i_0 of $U^*(\xi) = z^*(\xi) - H^{-1} F^t \xi$ are the same. If their union is a convex set, it is computed to permit a more compact description of the solution and the corresponding control law is continuous and piecewise affine.

4 Dry Clutch Dynamic Model

A possible dynamic model of the clutch system during slipping conditions consists of the following two differential equations:

\begin{align*}
I_e \ddot{\omega}_e &= T_{in} - b_e \omega_e - T_{cl}, \quad (13) \\
I_v \ddot{\omega}_v &= T_{cl} - b_v \omega_v - T_l, \quad (14)
\end{align*}

where I_e is the engine inertia, ω_e the crankshaft rotor speed, T_{in} the engine torque, b_e the crankshaft friction coefficient, T_{cl} the torque transmitted by the clutch, I_v the equivalent vehicle moment of inertia (it takes into account the presence of the clutch, the main-shaft, the powertrain and the vehicle), ω_v the clutch disk rotor speed, b_v the corresponding friction coefficient and T_l the equivalent load torque. Equation (13) models the rotation of the crankshaft, whereas (14) models the rotation of the so called clutch disk. The remaining part of the powertrain transmission system is simply modeled through the equivalent vehicle inertia I_v and the load torque T_l. Though equations (13)–(14) do not model in detail the whole powertrain, this model captures the main dynamics of the system under investigation and is simple enough to design a controller through analytical procedures.

When the clutch is engaged, by adding (13) and (14), the dynamic model can be written as

\begin{equation}
(I_e + I_v) \dot{\omega} = -(b_e + b_v) \omega + T_{in} - T_l \quad (15)
\end{equation}

where $\omega = \omega_e = \omega_v$. The switch from the slipping model (13)–(14) to the engaged model (15) is determined by the equality condition $\omega_e = \omega_v$ with the constraint that the clutch torque is smaller than the static friction torque, so that further slipping is avoided.

5 Dry Clutch Controller Design

5.1 Model for Control and Parameters

In system (13)–(14) the load torque T_l is modeled as a step disturbance, leading to the following state space representation:

\begin{align*}
\dot{x} &= \begin{bmatrix}
-\frac{b_e}{I_e} & 0 & 0 & 0 \\
-\frac{b_e}{I_e} + \frac{b_v}{I_v} & -\frac{b_v}{I_v} & 0 & 0 \\
0 & 0 & -\frac{1}{I_v} & \frac{1}{I_v} \\
0 & 0 & -\frac{1}{I_v} & 0
\end{bmatrix} x + \begin{bmatrix}
\frac{1}{I_e} \\
\frac{1}{I_v} \\
0 \\
0
\end{bmatrix} u, \quad (16) \\
y &= \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix} x, \quad (17)
\end{align*}

where $x = [\omega_e, \omega_v, -\omega_v, T_l]^t$ and $u = [T_{cl}, T_{in}]^t$. Note that the difference between the two rotor speeds has been considered as a state variable instead of the vehicle speed, since the main goal of the controller will be to ensure a suitable profile to this variable thus guaranteeing a smooth engagement process with small friction losses. Model (16)–(17) is discretized by exact sampling (sampling period 10 ms), which results in a model in the form (1).

The following set of parameters with reference to a medium size car are considered: $I_e = 0.2 \text{ kgm}^2$, $I_v = 0.7753 \text{ kgm}^2$, $b_e = b_v = 0.03 \text{ Nms}$.

The MPC controller is based on the optimization problem (4) where $r_t = [95, 0] \text{ rad/s}$, $y_{\text{min}} = [50, +\infty] \text{ rad/s}$ (the minimum engine speed and the minimum slip speed, respectively), $y_{\text{max}} = [+\infty, +\infty]$, $u_{\text{min}} = [0, 0] \text{ Nm}$ and $u_{\text{max}} = [500, 350] \text{ Nm}$ (the minimum and the maximum values of the clutch torque and of the engine torque, respectively), $\delta u_{\text{min}} = [-200, -20] \text{ Nm/s}$ and $\delta u_{\text{max}} = [800, 500] \text{ Nm/s}$ (the minimum and the maximum variations of the clutch torque and of the engine torque at each step, respectively), $Q = \text{Diag}[q_1, q_2]$ and $R = \text{Diag}[p_1, p_2]$.

In order to estimate the load torque and filter noise from the measurements of x_1, x_2, u the state has been estimated by using the Kalman filter based on the noisy model obtained from (1) by adding process and measurement noises, which are assumed to be independent Gaussian noise vectors with covariance matrices I_1 and $\frac{1}{1000} I_2$, respectively.

5.2 Tuning

In the first phase the parameters are tuned in simulation until the desired performance is achieved by using Simulink and the MPC Toolbox [3]. The parameters to be tuned are the prediction horizons N_y, the number of free moves N_u, the constraint horizons N_{cy} and N_{cu} and the weights Q and R. The trade-off between fast engagement, minimum slipping losses, and comfortable lock-up is easily adjustable by opportunistically choosing the weights Q and R. N_y, N_u, N_{cy}, N_{cu} are the result of a trade-off between controller performance and its complexity in terms of number of regions resulting from the explicit solution.

The following three sets of parameters will be considered and compared:
Figure 1: Controller 1: projection of the critical regions on the \([\omega_e, \omega_v]\)-plane (\(T_l = 4.8\) Nm, \(T_{cl} = 70\) Nm, \(T_{in} = 80\) Nm, \(\tau = [95, 0]\) rad/s)

- Controller 1 : \(N_y = 25, N_u = 1, N_{cy} = 2, N_{cu} = 1, \rho_1 = 1, \rho_2 = 10, q_1 = 1, q_2 = 2\).
- Controller 2 : \(N_y = 25, N_u = 1, N_{cy} = 2, N_{cu} = 1, \rho_1 = 0.1, \rho_2 = 10, q_1 = 10, q_2 = 0.1\).
- Controller 3 : \(N_y = 25, N_u = 2, N_{cy} = 2, N_{cu} = 2, \rho_1 = 0.1, \rho_2 = 100, q_1 = 0.001, q_2 = 0.5\).

The number of regions obtained for the three controllers are 27, 27 and 31, respectively. Note that Controller 3 consists of 31 regions as the number of degrees of freedom \(N_u\) and input constraints \(N_{cu}\) is increased. In Fig. 1 a section corresponding to the polyhedral partition of Controller 1 is depicted. In Fig. 1 regions #1 and #5 correspond to the saturated controller \([-200, 50]\) Nm and \([800, -20]\) Nm respectively, while regions #2, #3 and #4 are transition regions between the two saturated controllers.

5.3 Simulation Results

The engagement process during standing starts has been considered. Figures 2-4 show the crankshaft speed, the vehicle speed, the engine torque and the clutch torque under the explicit MPC feedback control, for the initial crankshaft speed \(\omega_e(0) = 95\) rad/s, \(\omega_v(0) = 0\) rad/s and initial engine torque \(T_{in}(0) = 80\) Nm. Each figure refers to a constant load torque \(T_l = 4.8\) Nm.

As proposed in [6], in order to compare different tunings of the MPC controller, two parameters have been considered: the dissipated energy and the comfort. The former is computed through the expression

\[
E_d = \int_0^{\tau^*} k x_1(\tau) x_2(\tau) d\tau, \tag{18}
\]

where \(\tau^*\) is the engagement time, i.e., the time at which the lock-up occurs. The second comfort-related parameter is the difference \(\dot{\omega}_e(\tau^*) - \dot{\omega}_v(\tau^*)\) between the angular accelerations of the two disks at lock-up.

Table 1 summarizes the simulation results obtained with the three different controllers. A comparison between the second and the third row of this table shows that by allowing a larger variation of the crankshaft speed (i.e. by selecting smaller values for the parameter \(q_1\) a smaller engagement time is obtained, which is paid by a larger tracking error for the crankshaft speed. Controller 1 seems to provide a trade-off among the conflicting objectives of the closed loop system.

<table>
<thead>
<tr>
<th>Controller</th>
<th>(\tau^*)</th>
<th>(T_{cl}(\tau^*))</th>
<th>(E_d)</th>
<th>(x_2(\tau^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.70 s</td>
<td>132 Nm</td>
<td>3327 J</td>
<td>62 rad/s²</td>
</tr>
<tr>
<td>2</td>
<td>0.76 s</td>
<td>116 Nm</td>
<td>4156 J</td>
<td>140 rad/s²</td>
</tr>
<tr>
<td>3</td>
<td>0.42 s</td>
<td>99 Nm</td>
<td>2464 J</td>
<td>143 rad/s²</td>
</tr>
</tbody>
</table>

Table 1: Performance comparison of the three controllers

6 Conclusions

A piecewise linear model predictive controller for the dry clutch engagement problem has been proposed. The controller is designed by explicitly considering the input and state constraints in the problem formulation. The direct use of the state variables (engine speed and clutch disk speed), the estimation of the load torque and the use of the clutch torque and engine torque as control variables, allows one to design the controller parameters so that a fast engagement process with small dissipated energy and good comfort can be achieved. Simulation results have shown how to tune the controller parameters so that a suitable trade-off between closed loop performance and controller complexity is achieved.
Figure 3: Crankshaft speed, vehicle rotor speed, clutch torque and engine torque as a function of time during the start-up engagement process with Controller 2

Figure 4: Crankshaft speed, vehicle rotor speed, clutch torque and engine torque as a function of time during the start-up engagement process with Controller 3

References

