ME 231A Syllabus

Modeling

- Linear Nonlinear state space forms
 - Continuous time and discrete time
 - Linearization
 - Discretization
 - Stability

Optimization

- Basis Concept of Optimizations
 - Min/Inf, Feasible, Active Constraint, Redundant Constraint, Global and Local Optimum
 - Linear Program, Quadratic Program, nonlinear program
 - Convexity: definition, importance, convex optimization problems

- Optimality conditions
 - Necessary and sufficient optimality conditions for unconstrained optimization problems
 - Duality theory: Main concepts, what is used for, how to write a dual of an optimization problem
 - Strong duality: Definition and concept of constraints qualifications
 - KKT conditions

- LPs and QPs
 - Definitions, solution properties
 - Number of active constraints and multiple optima (LP)
 - Dual of LPs and QPs
 - Convex Piecewise-linear Optimization

- Polyhedra
 - H- and V- representation
 - Function defined on Polyhedra
 - Basic Operations on Polytopes
 - Minkowsky sum, Pontriagin difference and their application to composition with linear function.

- Multiparametric Programming
 - Main idea.
 - Main Concept of Critical Region.
 - Solutions properties of mpLP and of mpQP
Optimal Control

- General Formulation of constrained control problems
 - Finite time, Infinite time
 - Value function, Feasible sets
- Solution Finite time
 - Batch Approach (with and without substituting the dynamics)
 - Principle of Optimality and Dynamic Programming (DP)
 - Comparison Batch vs DP
- Solution of Infinite Time
 - Value Function iteration
- Solution with Receding Horizon
- Review of Unconstrained case
 - Finite time LQR (via batch and via DP)
 - Infinite time LQR
 - Lyapunov Stability
 - Solution via DP and gridding
- Constrained 2-Norm Optimal Control
 - Solution via Batch Approach and online optimization.
 - Use of Multiparametric Programming : Solution via Batch
 - Properties of the state-feedback solution
 - Infinite horizon properties
- Controllability, reachability and invariance
 - Computation of Controllable and Reachable Sets
 - Invariant Sets

Receding Horizon Control

- Definition, Notation and Basic Algorithm.
- Main Theorem of RHC (Stability and Feasibility): proof
- Tuning and Practical Rules
- Zero steady-state tracking RHC
- Online and Offline RHC implementations
Loop-Shaping

- Review of transfer functions, ode models, state-space models, frequency-response, functions, interconnections, stability, Fourier transform, Control Toolbox commands
- Nyquist stability criterion
- Bandwidths, Sensitivity (S) and Complementary Sensitivity (T) function, arithmetic for comparing open and closed-loop properties, robustness margins
- Loopshaping design theorems
- Youla parametrization for stable plants, opportunities for nonlinear optimization of performance, both in time and frequency domain.
- Youla parametrization for unstable plants
- Effect of resonances and notches on loopshape; limitations dues to open-loop right-half-plane poles and zeros
- Glover/McFarlane loopshaping procedure
- Mixed S/T synthesis for MIMO systems using \(H^\infty\) optimization