Unsteady Body Motion, Wave-Structure Interaction, Wave Energy Extraction, Forward-Speed Effects, Hydrofoil Theory

Course Syllabus

A. Unsteady Body Motion in an Infinite Fluid
 General formulation & moving frame of reference
 Unsteady hydrodynamic forces and moments
 Kirchoff’s decomposition, added mass theory
 Solution representation by singularity distribution
 Steady versus unsteady flows about bodies
 Empirical modeling of viscous effects

B. Body Motion in Waves and Ocean Energy
 Coordinate systems and general consideration
 Linearization of body boundary condition
 Mode decomposition in time-harmonic problems
 Hydrodynamic forces and moments
 Added masses and damping matrices
 Radiation and diffraction potentials; examples
 Hydrostatics, body inertia, and equations of motion
 Response characteristics
 Forward-speed effects and ship-motion theory
 Reciprocity Relations
 Wave-energy extraction principles
 Energy devices and analysis

C. Hydrofoil Theory
 Complex variables, complex potential, conformal mapping
 Blasius theorem, circle theorem, circulation
 Two-dimensional thin-wing theory
 Thickness and Lifting problems, Applications
 Vortex theorems in three dimensions
 Three-dimensional wings, lifting-line theory
 Induced drag, Circulation Distribution
 Cavitating Flows.

Homework problems: (50%), Midterm-Quiz: (15%) Final Exam: Either 1-hour oral or 3-hour written (35%)
Textbook & references: Lecture-Notes & Handouts,
Contact: Prof. R. W. Yeung 6135 Etcheverry Hall
Email: rwyeung@Berkeley.edu